Advertisement

Rule-Based Classification of Patients Screened with the MMPI Test in the Copernicus System

  • Daniel JachyraEmail author
  • Jerzy Gomuła
  • Krzysztof Pancerz
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 486)

Abstract

The Copernicus system is a tool for computer-aided diagnosis of mental disorders based on personality inventories. Knowledge representation in the form of rules is the closest method to human activity and reasoning, among others, in making a medical diagnosis. Therefore, in the Copernicus system, rule-based classification of patients screened with the MMPI test is one of the most important parts of the tool. The main goal of the chapter is to give more precise view of this part of the developed tool.

Keywords

Personality Inventory Elementary Condition Aggregation Factor Minnesota Multiphasic Personality Inventory Reactive Psychosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This chapter has been partially supported by the grant from the University of Information Technology and Management in Rzeszów, Poland.

References

  1. 1.
    Bazan, J.G., Szczuka, M.S.: The rough set exploration system. In: Peters, J., Skowron, A. (eds.) Transactions on Rough Sets III, Lecture Notes in Computer Science, vol. 3400, pp. 37–56. Springer, Berlin Heidelberg (2005)Google Scholar
  2. 2.
    Butcher, J. (ed.): MMPI: Research Developments and Clinical Application. McGraw-Hill Book Company (1969)Google Scholar
  3. 3.
    Choynowski, M.: Multiphasic Personality Inventory (in Polish). Psychometry Laboratory Polish Academy of Sciences, Warsaw (1964)Google Scholar
  4. 4.
    Cios, K., Pedrycz, W., Swiniarski, R., Kurgan, L.: Data Mining A Knowledge Discovery Approach. Springer, New York (2007)Google Scholar
  5. 5.
    Dahlstrom, W., Welsh, G.: An MMPI A Guide to use in Clinical Practice. University of Minnesota Press, Minneapolis (1965)Google Scholar
  6. 6.
    Dahlstrom, W., Welsh, G., Dahlstrom, L.: An MMPI Handbook, vol. 1–2. University of Minnesota Press, Minneapolis (1986)Google Scholar
  7. 7.
    Duch, W., Kucharski, T., Gomuła, J., Adamczak, R.: Machine learning methods in analysis of psychometric data. Application to Multiphasic Personality Inventory MMPI-WISKAD (in polish). Toruń (1999)Google Scholar
  8. 8.
    Gomuła, J., Paja, W., Pancerz, K., Mroczek, T., Wrzesień, M.: Experiments with hybridization and optimization of the rules knowledge base for classification of MMPI profiles. In: Perner, P. (ed.) Advances on Data Mining: Applications and Theoretical Aspects, LNAI, vol. 6870, pp. 121–133. Springer, Berlin Heidelberg (2011)Google Scholar
  9. 9.
    Gomuła, J., Paja, W., Pancerz, K., Szkoła, J.: A preliminary attempt to rules generation for mental disorders. In: Proceedings of the International Conference on Human System Interaction (HSI 2010). Rzeszów, Poland (2010)Google Scholar
  10. 10.
    Gomuła, J., Paja, W., Pancerz, K., Szkoła, J.: Rule-based analysis of MMPI data using the Copernicus system. In: Hippe, Z., Kulikowski, J., Mroczek, T. (eds.) Human-Computer Systems Interaction. Backgrounds and Applications 2. Part II, Advances in Intelligent and Soft Computing, vol. 99, pp. 191–203. Springer, Berlin Heidelberg (2012)Google Scholar
  11. 11.
    Gomuła, J., Pancerz, K., Szkoła, J.: Computer-aided diagnosis of patients with mental disorders using the Copernicus system. In: Proceedings of the International Conference on Human System Interaction (HSI 2011). Yokohama, Japan (2011)Google Scholar
  12. 12.
    Gomuła, J., Pancerz, K., Szkoła, J., et al.: Classification of MMPI profiles of patients with mental disorders—Experiments with attribute reduction and extension. In: Yu, J. (ed.) Rough Set and Knowledge Technology, Lecture Notes in Artificial Intelligence, vol. 6401, pp. 411–418. Springer, Berlin Heidelberg (2010)Google Scholar
  13. 13.
    Gomuła, J., Pancerz, K., Szkoła, J.: Rule-based classification of MMPI data of patients with mental isorders: experiments with basic and extended profiles. Int. J. Comput. Intell. Syst. 4(5) (2011)Google Scholar
  14. 14.
    Greenes, R.: Clinical Decision Support: The Road Ahead. Elsevier, Amsterdam (2007)Google Scholar
  15. 15.
    Lachar, D.: The MMPI: Clinical Assessment and Automated Interpretations. Western Psychological Services, Fate Angeles (1974)Google Scholar
  16. 16.
    Płuzek, Z.: Value of the WISKAD-MMPI test for nosological differential diagnosis (in polish). The Catholic University of Lublin (1971)Google Scholar
  17. 17.
    Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Daniel Jachyra
    • 1
    Email author
  • Jerzy Gomuła
    • 2
    • 3
  • Krzysztof Pancerz
    • 4
  1. 1.Chair of Information Systems ApplicationsUniversity of Information Technology and Management in RzeszówRzeszówPoland
  2. 2.The Andropause InstituteMedan FoundationWarsawPoland
  3. 3.Cardinal Stefan Wyszyński University in WarsawWarsawPoland
  4. 4.Institute of Biomedical InformaticsUniversity of Information Technology and Management in RzeszówRzeszówPoland

Personalised recommendations