Skip to main content

Nonlinear Plane Longitudinal Waves in Elastic Materials (John Model, Two-Constant Model and Signorini Model, Three-Constant Model)

  • Chapter
  • First Online:
Nonlinear Elastic Waves in Materials

Part of the book series: Foundations of Engineering Mechanics ((FOUNDATIONS))

  • 1508 Accesses

Abstract

This chapter is devoted to an analysis of nonlinear elastic plane longitudinal harmonic waves, which corresponds to the John and Signorini models. The statement is divided into two parts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ascione, L., Grimaldi, A.: Elementi di meccanica del continuo (Elements of Continuum Mechanics). Massimo, Napoli (1993)

    Google Scholar 

  2. Bell, J.F.: Experimental Foundations of Solid Mechanics. Flugge’s Handbuch der Physik, Band VIa/1, Springer, Berlin (1973)

    Google Scholar 

  3. Cattani, C., Rushchitsky, J.J.: Cubically nonlinear elastic waves: wave equations and methods of analysis. Int. Appl. Mech. 39(10), 1115–1145 (2003)

    Article  MathSciNet  Google Scholar 

  4. Cattani, C., Rushchitsky, J.J.: Cubically nonlinear elastic waves versus quadratically ones: main wave effects. Int. Appl. Mech. 39(12), 1361–1399 (2003)

    Article  MathSciNet  Google Scholar 

  5. Cattani, C., Rushchitsky, J.J.: On nonlinear plane waves in hyperelastic medium deforming by Signorini’s law. Int. Appl. Mech. 42(8), 895–903 (2006)

    Article  MathSciNet  Google Scholar 

  6. Cattani, C., Rushchitsky, J.J.: Similarities and differences in description of evolution of quadratically nonlinear hyperelastic plane waves by Murnaghan’s and Signorini’s potentials. Int. Appl. Mech. 42(9), 997–1010 (2006)

    Article  Google Scholar 

  7. Cattani, C., Rushchitsky, J.J.: Wavelet and wave analysis as applied to materials with micro or nanostructure. World Scientific, Singapore/London (2007)

    MATH  Google Scholar 

  8. Cattani, C., Rushchitsky, J.J., Sinchilo, S.V.: Cubic nonlinearity in elastic materials: theoretical prediction and computer modelling of new wave effects. Math. Comput. Model Dyn. Syst. 10(3–4), 331–352 (2004)

    MATH  Google Scholar 

  9. Eringen, A.C.: Nonlinear Theory of Continuous Media. McGraw Hill, New York, NY (1962)

    Google Scholar 

  10. Fu, Y.B.: Nonlinear Elasticity: Theory And Applications. London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  11. Green, A.E., Adkins, J.E.: Large Elastic Deformations and Nonlinear Continuum Mechanics. Oxford University Press/Clarendon Press, London (1960)

    Google Scholar 

  12. Guz, A.N.: Uprugie volny v tielakh s nachalnymi napriazheniiami (Elastic Waves in Bodies with Initial Stresses). Naukova dumka, Kiev (1987)

    Google Scholar 

  13. Guz, A.N.: Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  14. Guz, A.N.: Uprugie volny v tielakh s nachalnymi (ostatochnymi) napriazheniiami (Elastic Waves in Bodies with Initial (residual) Stresses. А.С.К, Kiev (2004)

    Google Scholar 

  15. Holzapfel, G.A.: Nonlinear Solid Mechanics. A Continuum Approach for Engineering. Wiley, Chichester (2006)

    Google Scholar 

  16. Hanyga, A.: Mathematical Theory of Nonlinear Elasticity. Elis Horwood, Chichester (1983)

    Google Scholar 

  17. Lur’e, A.I.: Nonlinear Theory of Elasticity. North-Holland, Amsterdam (1990)

    MATH  Google Scholar 

  18. Lur’e, A.I.: Theory of Elasticity. Springer, Berlin (1999)

    Google Scholar 

  19. Murnaghan, F.D.: Finite Deformation in an Elastic Solid. Wiley, New York, NY (1951/1967)

    Google Scholar 

  20. Noll, W., Truesdell, C.: The Nonlinear Field Theories of Mechanics. Flügge Encyclopedia of Physics, vol. III, part 3. Springer, Berlin (1964)

    Google Scholar 

  21. Novozhilov, V.V.: Osnovy nielinieinoi uprugosti (Foundations of Nonlinear Elasticity). Gostekhizdat, Moscow (1948)

    Google Scholar 

  22. Novozhilov, V.V.: Foundations of the Nonlinear Theory of Elasticity. Graylock, Rochester, NY (1953)

    MATH  Google Scholar 

  23. Nowacki, W.: Theory of Elasticity. PWN, Warszawa (1970)

    Google Scholar 

  24. Ogden, R.W.: The Nonlinear Elastic Deformations. Dover, New York, NY (1997)

    Google Scholar 

  25. Rivlin, R.S., Saunders, D.W.: Large elastic deformations of isotropic materials. VII. Experiments on the deformation of rubber. Philos. Trans. R. Soc. Lond., Ser. A 243, 251–288 (1951)

    Article  MATH  Google Scholar 

  26. Rivlin, R.S.: The solution of problems in second order elasticity theory. Arch. Ration. Mech. Anal. 2, 53–81 (1953)

    MathSciNet  Google Scholar 

  27. Rushchitsky, J.J.: Features of development of the theory of elastic nonlinear waves. (Matemamatychni metody ta fizyko-mekhanichni polia – Mathematical Methods and Physical-Mechanical Fields) 46(3), 90–105 (2003)

    Google Scholar 

  28. Rushchitsky, J.J.: On development of the theory of nonlinear waves in materials, based on Murnaghan and Signorini potentials. Int. Appl. Mech. 45(8), 809–846 (2009)

    Article  MathSciNet  Google Scholar 

  29. Rushchitsky, J.J.: Theory of waves in materials. Ventus Publishing ApS, Copenhagen (2011)

    Google Scholar 

  30. Rushchitsky, J.J.: Certain class of nonlinear hyperelastic waves: classical and novel models, wave equations, wave effects. Int. J. Appl. Math. Mech. 8(6), 400–443 (2012)

    Google Scholar 

  31. Rushchitsky, J.J., Cattani, C.: Nonlinear acoustic waves in materials: retrospect and some new lines of development. Proc. Int. Workshop “Potential Flows and Complex Analysis”, pp. 135–145. Kyiv, Ukraine (2003)

    Google Scholar 

  32. Rushchitsky, J.J., Cattani, C.: On certain direction in the nonlinear wave analysis in elastic materials. Proc. XXXI Summer School “Advanced Problems in Mechanics”, pp. 185–194. St. Petersburg, Russia (2004)

    Google Scholar 

  33. Rushchitsky, J.J., Cattani, C., Lassera, E.: Nonlinear Signorini model as the basis for studying the Volterra distortions. Proc. Int. Workshop “Waves and flows”, pp. 65–69. Kyiv, Ukraine (2006)

    Google Scholar 

  34. Rushchitsky, J.J., Ergashev, B.B.: On relationships for physical constants of isotropic mixture. Soviet Appl. Mech. 25(11), 62–67 (1989)

    Google Scholar 

  35. Rushchitsky, J.J., Tsurpal, S.I.: Khvyli v materialakh z mikrostrukturoiu (Waves in Materials with the Microstructure). SP Timoshenko Institute of Mechanics, Kiev (1998)

    Google Scholar 

  36. Signorini, A.: Transformazioni termoelastiche finite. Annali di Matematica Pura ed Applicata, Serie IV 22, 33–143 (1943)

    Article  MATH  MathSciNet  Google Scholar 

  37. Signorini, A.: Transformazioni termoelastiche finite. Annali di Matematica Pura ed Applicata, Serie IV 30, 1–72 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  38. Signorini, A.: Transformazioni termoelastiche finite. Solidi Incomprimibili. A Mauro Piconenel suo 70ane compleano. Annali di Matematica Pura ed Applicata, Serie IV 39, 147–201 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  39. Signorini, A.: Questioni di elasticite non linearizzata. Edizioni Cremonese, Roma (1959)

    Google Scholar 

  40. Signorini, A.: Questioni di elasticite non linearizzata e semilinearizzata. Rendiconti di Matematica 18(1–2), 95–139 (1959)

    MATH  MathSciNet  Google Scholar 

  41. Signorini, A.: Transformazioni termoelastiche finite. Solidi Vincolati. A Giovanni Sansone nel suo 70ane compleano. Annali di Matematica Pura ed Applicata Serie IV 51, 320–372 (1960)

    MathSciNet  Google Scholar 

  42. Truesdell, C.: A First Course in Rational Continuum Mechanics. John Hopkins University, Baltimore, MD (1972)

    Google Scholar 

  43. Truesdell, C.: Second order effects in the mechanics of materials. Proc. Int. Symp. on 2nd Order Effects, pp. 1–47. Haifa, (1962)

    Google Scholar 

  44. Truesdell, C., Toupin, R.: The Classical Field Theories. Flügge Handbuch der Physik, Band III/1. Springer, Berlin (1960)

    Google Scholar 

  45. Wineman, A.: Some results for generalized neo-Hookean elastic materials. Int. J. Non Linear Mech. 40(2–3), 271–289 (2004)

    Google Scholar 

  46. Zarembo, L.K., Krasilnikov, V.A.: Vvedenie v nielineinuiu akustiku (Introduction to Nonlinear Acoustics). Nauka, Moscow (1966)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Exercises

Exercises

  1. 1.

    Compare M L from (6.6) with M from (5.22) and note the difference between the Murnaghan and John approaches.

  2. 2.

    Derive formulas (6.18), (6.19), and (6.20) for components of the stress tensor from the representation of Murnaghan potential (6.17).

  3. 3.

    Try to realize in steps one of six shown on page 170 possibilities (e.g., consider the 4th standard problem).

  4. 4.

    Compare solution (6.27), obtained for the cubically nonlinear approach, with solution (5.22), obtained for the quadratically nonlinear approach, and analyze the differences and similarities.

  5. 5.

    Define simple shear and pure shear. Formulate distinctions between the two.

  6. 6.

    Substantiate the statement from page 174 that the potential as the work of internal forces is always positive.

  7. 7.

    Define omni-dimensional (uniform) tension.

  8. 8.

    Describe the Pointing and Kelvin effects. Formulate the distinctions between the two.

  9. 9.

    Try to find the dependence among algebraic invariants of Almansi and Cauchy–Green strain tensors (6.41), (6.42), and (6.43) in books not mentioned on page 178.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rushchitsky, J.J. (2014). Nonlinear Plane Longitudinal Waves in Elastic Materials (John Model, Two-Constant Model and Signorini Model, Three-Constant Model). In: Nonlinear Elastic Waves in Materials. Foundations of Engineering Mechanics. Springer, Cham. https://doi.org/10.1007/978-3-319-00464-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00464-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-00463-1

  • Online ISBN: 978-3-319-00464-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics