Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 692 Accesses

Abstract

Nowadays the planet is experimenting a fast growth in energy consumption and, simultaneously, a reduction in the amount of natural resources, especially in fossil fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ITER is an experimental fusion device in construction, see Chap. 3.

  2. 2.

    Stellarators are a family of fusion devices, see Chap. 4.

  3. 3.

    TJ-II is an experimental device built at CIEMAT, see Sect.  4.1.2.

  4. 4.

    For example, in a 3D phase space:

    $$\begin{aligned} f(t,x_1) = \int \mathrm{d }x_2 \mathrm{d }x_3\, J(x_2, x_3) f(t, x_1, x_2, x_3). \end{aligned}$$
    (1.10)
  5. 5.

    The most promising theory to explain turbulence in plasmas is the Gyrokinetic Theory [12].

  6. 6.

    When an index variable appears twice (as a subscript and a superscript) in the same expression it implies that we are summing over all of its possible values. For instance: \(a^i b_i = \sum _i a^i b_i\). Partial derivatives are denoted by a comma: \(f(\mathbf{x })_{,i}=\partial f(\mathbf{x }) / \partial x^i\). See [1] for the covariant and contravariant character of the tensors.

  7. 7.

    In Physics it is usual to normalize \(f\) to the total number of particles of the system: \(\int \mathrm{d }x f(x)=N\).

References

  1. Hasegawa A et al (1986) Phys Rev Lett 56:139

    Article  ADS  Google Scholar 

  2. Goldston RJ, Rutherford PH (1995) Introduction to plasma physics. Taylor and Francis, London

    Book  Google Scholar 

  3. Boozer AH (2005) Rev Mod Phys 76:1071

    Article  ADS  Google Scholar 

  4. Helander P, Sigmar DJ (2001) Collisional transport in magnetized plasmas. Cambridge University Press, Cambridge

    Google Scholar 

  5. Hazeltine RD, Meiss JD (2003) Plasma confinement. Dover Publications, USA

    Google Scholar 

  6. Goerler T et al (2011) Journal of Computational Physics 230:7053

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Pitcher CS, Stangeby PC (1997) Plasma Phys Controlled Fusion 39:779

    Article  ADS  Google Scholar 

  8. D’Haeseleer W, Hitchon W, Callen J, Shohet J (2004) Flux coordinates and magnetic field structure. Springer-Verlag, Berlin

    Google Scholar 

  9. Balescu R (1975) Equilibrium and nonequilibrium statistical mechanics. Wiley, USA

    MATH  Google Scholar 

  10. Balescu R (1988) Transport processes in plasmas: neoclassical transport theory. Elsevier Science Ltd, The Netherlands

    Google Scholar 

  11. Hinton FL, Hazeltine RD (1976) Rev Mod Phys 48:239

    Article  MathSciNet  ADS  Google Scholar 

  12. Brizard AJ, Hahm TS (2007) Rev Mod Phys 79:421

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Peeters AG (2000) Plasma Phys Controlled Fusion 42:B231

    Article  ADS  Google Scholar 

  14. Kloeden PE, Platen E (1992) Numerical solution of stochastic differential equations. Springer-Verlag, Berlin

    Book  MATH  Google Scholar 

  15. Boozer A, Kuo-Petravic G (1981) Phys Fluids 24(5):851

    Article  ADS  MATH  Google Scholar 

  16. Chen T (1988) A general form of the coulomb scattering operators for monte carlo simulations and a note on the guiding center equations in different magnetic coordinate conventions (Max Planck Institute fur Plasmaphisik. 0/50, Germany

    Google Scholar 

  17. Velasco J et al (2008) Nucl Fusion 48:065008

    Article  ADS  Google Scholar 

  18. Christiansen JP, Connor JW (2004) Plasma Phys Controlled Fusion 46:1537

    Article  ADS  Google Scholar 

  19. Evans L (2000) An introduction to stochastic differential equations. UC Berkeley, Department of Mathematics. http://math.berkeley.edu/~evans/SDE.course.pdf

  20. Amit D, Martin-Mayor V (2005) Field theory the renormalization group and critical phenomena, 3rd edn. World Scientific Publishing, Singapore

    Book  Google Scholar 

  21. Kampen NV (2007) Stochastic processes in physics and chemistry, 3rd edn. North-Holland Personal Library, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés de Bustos Molina .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de Bustos Molina, A. (2013). Introduction. In: Kinetic Simulations of Ion Transport in Fusion Devices. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-00422-8_1

Download citation

Publish with us

Policies and ethics