Skip to main content

Long Zero-Sum Free Sequences over Cyclic Groups

  • Chapter
Structural Additive Theory

Part of the book series: Developments in Mathematics ((DEVM,volume 30))

  • 1218 Accesses

Abstract

From previous chapters, we know that a zero-sum free sequence has length at most D(C n )−1=n−1. The goal of this chapter is characterize the structure of those zero-sum free sequences close to the extremal possible length. In fact, we will be able to characterize this structure for sequences quite a ways away from the maximal value, namely, for sequences of length roughly half the maximal possible length. This stands in stark contrast to what is known for extremal zero-sum free sequence over more general finite abelian groups: In general, the value D(G) is not known apart from several families of groups, and even in the simplest noncyclic case for which the value of D(G) is known—rank 2 groups—it is only very recently, and with a massive amount of effort, that the structure of sequences simply attaining the equality D(C m C n )−1 has been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.C. Baayen, Een combinatorisch problem voor eindige abelse groepen, in Colloquium Discrete Wiskunde. MC Syllabus (Math. Centre, Amsterdam, 1968)

    Google Scholar 

  2. G. Bhowmik, I. Halupczok, J. Schlage-Puchta, The structure of maximal zero-sum free sequences. Acta Arith. 143(1), 21–50 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Bialostocki, P. Dierker, D.J. Grynkiewicz, M. Lotspeich, On some developments of the Erdős-Ginzburg-Ziv theorem II. Acta Arith. 110(2), 173–184 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Bialostocki, M. Lotspeich, Developments of the Erdős-Ginzburg-Ziv Theorem I, in Sets, Graphs and Numbers (Janos Bolyai Mathematical Society, Budapest, 1991), pp. 97–117

    Google Scholar 

  5. P. van Emde Boas, D. Kruyswijk, A combinatorial problem on finite Abelian groups III. Math. Centrum Amsterdam Afd. Zuivere Wisk. ZW-009 (1967)

    Google Scholar 

  6. L. Gallardo, G. Grekos, On Brakemeier’s variant of the Erdős-Ginzburg-Ziv problem. Tatra Mt. Math. Publ. 20, 91–98 (2000)

    MathSciNet  MATH  Google Scholar 

  7. L. Gallardo, G. Grekos, J. Pihko, On a variant of the Erdős-Ginzburg-Ziv problem. Acta Arith. 89(4), 331–336 (1999)

    MathSciNet  MATH  Google Scholar 

  8. W.D. Gao, A. Geroldinger, On zero-sum sequences in \(\mathbb{Z}/n\mathbb{Z}\oplus\mathbb{Z}/n\mathbb{Z}\). Integers 3 (2003) (electronic)

    Google Scholar 

  9. W.D. Gao, A. Geroldinger, D.J. Grynkiewicz, Inverse zero-sum problems III. Acta Arith. 141(2), 103–152 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. W.D. Gao, Y.O. Hamidoune, Zero sums in abelian groups. Comb. Probab. Comput. 7(3), 261–263 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Geroldinger, Additive group theory and non-unique factorizations, in Combinatorial Number Theory and Additive Group Theory, ed. by M. Castellet. Advanced Courses in Mathematics CRM Barcelona (Birkhäuser, Berlin, 2009), pp. 1–86

    Chapter  Google Scholar 

  12. A. Geroldinger, F. Halter-Koch, Non-unique Factorizations: Algebraic, Combinatorial and Analytic Theory. Pure and Applied Mathematics: A Series of Monographs and Textbooks, vol. 278 (Chapman & Hall, an imprint of Taylor & Francis Group, Boca Raton, 2006)

    Book  Google Scholar 

  13. J.E. Olson, A combinatorial problem on finite Abelian groups I. J. Number Theory 1, 8–10 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  14. J.E. Olson, A combinatorial problem on finite Abelian groups II. J. Number Theory 1, 195–199 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  15. C. Reiher, On Kemnitz’ conjecture concerning lattice points in the plane. Ramanujan J. 13, 333–337 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Savchev, F. Chen, Long zero-free sequences in finite cyclic groups. Discrete Math. 307(22), 2671–2679 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Savchev, F. Chen, Long n-zero-free sequences in finite cyclic groups. Discrete Math. 308(1), 1–8 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. W.A. Schmid, Inverse zero-sum problems II. Acta Arith. 143(4), 333–343 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. W.A. Schmid, Restricted inverse zero-sum problems in groups of rank two. Q. J. Math. 63, 477–487 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grynkiewicz, D.J. (2013). Long Zero-Sum Free Sequences over Cyclic Groups. In: Structural Additive Theory. Developments in Mathematics, vol 30. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00416-7_11

Download citation

Publish with us

Policies and ethics