Skip to main content

Zero-Sums, Setpartitions and Subsequence Sums

  • Chapter
Book cover Structural Additive Theory

Part of the book series: Developments in Mathematics ((DEVM,volume 30))

  • 1204 Accesses

Abstract

With this chapter, we turn to the second main topic of the course: Subsequence sums and zero-sums. We begin by introducing the modern algebraic language for describing sequences and their subsums, which will be used throughout the remainder of the book. The notion of a setpartition is also introduced along with the basic existence result for n-setpartitions. As a very simple example of the use of setpartitions for finding zero-sums, we give the original proof of the Erdős-Ginzburg-Ziv Theorem, showing that a sequence of 2|G|−1 terms from an abelian group of order |G| must contain a zero-sum subsequence of length |G|. We then introduce the Davenport constant and prove the trivial upper bound: D(G)≤|G|.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Alon, Y. Caro, On three zero-sum Ramsey-type problems. J. Graph Theory 17(2), 177–192 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. N. Alon, M. Dubiner, Zero-sum sets of prescribed size, in Combinatorics, Paul Erdős is Eighty, ed. by D. Miklós, V.T. Sós, T. Szönyi. Bolyai Society Mathematical Studies (Janos Bolyai Mathematical Society, Keszthely, Hungary, 1993), pp. 33–50

    Google Scholar 

  3. N.R. Baeth, R.A. Wiegand, Factorization theory and decomposition of modules. Am. Math. Mon. 120, 3–34 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Bialostocki, P. Dierker, On the Erdős-Ginzburg-Ziv Theorem and the Ramsey numbers for stars and matchings. Discrete Math. 110(1–3), 1–8 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Bialostocki, P. Dierker, D.J. Grynkiewicz, M. Lotspeich, On some developments of the Erdős-Ginzburg-Ziv theorem II. Acta Arith. 110(2), 173–184 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Bialostocki, M. Lotspeich, Developments of the Erdős-Ginzburg-Ziv Theorem I, in Sets, Graphs and Numbers (Janos Bolyai Mathematical Society, Budapest, 1991), pp. 97–117

    Google Scholar 

  7. Y. Caro, Zero-sum problems—a survey. Discrete Math. 152(1–3), 93–113 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. S.T. Chapman (ed.), Arithmetical Properties of Commutative Rings and Monoids. Lect. Notes Pure Appl. Math., vol. 241 (Chapman & Hall/CRC, Boca Raton, 2005)

    MATH  Google Scholar 

  9. P. Erdős, A. Ginzburg, A. Ziv, Theorem in additive number theory. Bull. Res. Counc. Isr. 10F, 41–43 (1961)

    Google Scholar 

  10. Z. Füredi, D.J. Kleitman, On zero-trees. J. Graph Theory 16, 107–120 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Z. Füredi, D.J. Kleitman, The minimal number of zero sums, in Combinatorics, Paul Erdős is Eighty. Bolyai Soc. Math. Stud., vol. 1 (János Bolyai Math. Soc., Budapest, 1993), pp. 159–172

    Google Scholar 

  12. W.D. Gao, A. Geroldinger, Zero-sum problems in finite Abelian groups: A survey. Expo. Math. 24, 337–369 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Geroldinger, Additive group theory and non-unique factorizations, in Combinatorial Number Theory and Additive Group Theory, ed. by M. Castellet. Advanced Courses in Mathematics CRM Barcelona (Birkhäuser, Berlin, 2009), pp. 1–86

    Chapter  Google Scholar 

  14. A. Geroldinger, F. Halter-Koch, Non-unique Factorizations: Algebraic, Combinatorial and Analytic Theory. Pure and Applied Mathematics: A Series of Monographs and Textbooks, vol. 278 (Chapman & Hall, an imprint of Taylor & Francis Group, Boca Raton, 2006)

    Book  Google Scholar 

  15. A. Geroldinger, F. Halter-Koch, Non-unique factorizations: A survey, in Multiplicative Ideal Theory in Commutative Algebra, ed. by J.W. Brewer, S. Glaz, W. Heinzer, B. Olberding (Springer, New York, 2006), pp. 207–226

    Chapter  Google Scholar 

  16. A. Geroldinger, F. Kainrath, On the arithmetic of tame monoids with applications to Krull monoids and Mori domains. J. Pure Appl. Algebra 214, 2199–2218 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. D.J. Grynkiewicz, On four colored sets with nondecreasing diameter and the Erdős-Ginzburg-Ziv Theorem. J. Comb. Theory, Ser. A 100(1), 44–60 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. D.J. Grynkiewicz, An extension of the Erdős-Ginzburg-Ziv theorem to hypergraphs. Eur. J. Comb. 26(8), 1154–1176 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. D.J. Grynkiewicz, Sumsets, Zero-Sums and Extremal Combinatorics. Dissertation, Caltech, 2005

    Google Scholar 

  20. D.J. Grynkiewicz, On a partition analog of the Cauchy-Davenport theorem. Acta Math. Hung. 107(1–2), 161–174 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. D.J. Grynkiewicz, On the number of m-term zero-sum subsequences. Acta Arith. 121(3), 275–298 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Kisin, The number of zero sums modulo m in a sequence of length n. Mathematika 41(1), 149–163 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. H.B. Mann, Two addition theorems. J. Comb. Theory 3, 233–235 (1967)

    Article  MATH  Google Scholar 

  24. J.E. Olson, On a combinatorial problem of Erdős, Ginzburg, and Ziv. J. Number Theory 8(1), 52–57 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  25. J.E. Olson, An addition theorem for finite abelian groups. J. Number Theory 9(1), 63–70 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  26. O. Ordaz, D. Quiroz, Barycentric-sum problems: A survey. Divulg. Mat. 15(2), 193–206 (2007)

    MathSciNet  MATH  Google Scholar 

  27. K. Rogers, A combinatorial problem in abelian groups. Proc. Camb. Philos. Soc. 59, 559–562 (1963)

    Article  MATH  Google Scholar 

  28. A. Schrijver, P. Seymour, A simpler proof and a generalization of the zero-trees theorem. J. Comb. Theory, Ser. A 58, 301–305 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  29. D. Smertnig, Sets of lengths in maximal orders in central simple algebras. Preprint

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grynkiewicz, D.J. (2013). Zero-Sums, Setpartitions and Subsequence Sums. In: Structural Additive Theory. Developments in Mathematics, vol 30. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00416-7_10

Download citation

Publish with us

Policies and ethics