Skip to main content

Cubature Methods and Applications

  • Chapter
  • First Online:
Paris-Princeton Lectures on Mathematical Finance 2013

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2081))

Abstract

We present an introduction to a new class of numerical methods for approximating distributions of solutions of stochastic differential equations. The convergence results for these methods are based on certain sharp gradient bounds established by Kusuoka and Stroock under non-Hörmader constraints on diffusion semigroups. These bounds and some other subsequent refinements are covered in these lectures. In addition to the description of the new class of methods and the corresponding convergence results, we include an application of these methods to the numerical solution of backward stochastic differential equations. As it is well-known, backward stochastic differential equations play a central role in pricing financial derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The process X is uniquely identified by (1) only up to a set of measure 0. Two processes X 1 and X 2 satisfying (1) are indistinguishable: the set \(\{\omega \in \Omega \vert \exists t \in [0,\infty )\) such that \(X_{t}^{1}(\omega ) = X_{t}^{2}(\omega )\}\) is a \(\mathbb{P}\)-null set (has probability zero). Similarly, the identity (2) holds \(\mathbb{P}\)-almost surely, i.e. there can be a subset of \(\Omega \) of probability zero where (2) does not hold.

  2. 2.

    Of course the sum of the weights λ i, t is 1, i.e., \(\sum _{i=1}^{n_{t}}\lambda _{i,t} = 1\).

  3. 3.

    To be more precise, following the phraseology of [27], we describe here the simplified weak Euler scheme for a scalar SDE driven by a multi-dimensional noise.

  4. 4.

    In (13) and subsequently, [z] denotes the integer part of \(z \in \mathbb{R}\).

  5. 5.

    See Proposition 118 in [18].

  6. 6.

    For any positive integer m, the set \(\mathcal{C}_{b}^{m}({\mathbb{R}}^{a}; {\mathbb{R}}^{b})\) is the set of all bounded continuous functions \(\varphi : {\mathbb{R}}^{a} \rightarrow {\mathbb{R}}^{b}\), m-times continuously differentiable with all derivatives bounded.

  7. 7.

    In (23) and subsequently, \(\partial V _{i}\) is the matrix valued map \(\partial V _{i} := (\partial _{n}V _{i}^{m})_{1\leq n,m\leq N}\).

  8. 8.

    Although not used in the sequel, the result holds for general \(f : [0,\infty ) \times \Omega \rightarrow E\) such that \(f(t) \in {\mathbb{D}}^{1,2}(E)\) for any t ∈ [0,T], i.e., not necessarily adapted with respect to the natural filtration of B. In this case, the F i(T) is the Skorohod integral and not the Itô integral of f. See, for example, Proposition 1.38 page 43 in [51].

  9. 9.

    In the following, we allow for the constant c to take different values from one line to another.

  10. 10.

    The TBBA has also been used to control on the computational effort for a class of numerical algorithm using the family \(\bar{X}\left (x\right ),\;x \in {\mathbb{R}}^{d}\;\)as defined in (96), see [47] for details.

  11. 11.

    These are the straight lines connecting the origin with ( − 1, − 1), (1, − 1), ( − 1, 1), (1, 1).

  12. 12.

    Numerical experiments were performed with single-threaded code on a Intel i7 processor at 2.8 GHz.

  13. 13.

    Indeed, the consideration is trivial if this condition is violated.

  14. 14.

    cf. Proposition 1.5.4 in Nualart [51]

  15. 15.

    Theorem 80 can be extended to cover the rate of convergence for test functions \(\varphi \in \mathcal{C}_{b}^{p}({\mathbb{R}}^{N}, \mathbb{R}),\) in the same manner as the corresponding results in Theorem 46 and Corollary 47.

References

  1. G.B. Arous, Flots et series de Taylor stochastiques. Probab. Theory Relat. Fields 81, 29–77 (1989)

    Article  MATH  Google Scholar 

  2. V. Bally, D. Talay, The law of the Euler scheme for stochastic differential equations I. Convergence rate of the distribution function. Probab. Theory Relat. Fields 104, 43–60 (1996)

    Article  MATH  Google Scholar 

  3. B. Bouchard, N. Touzi, Discrete time approximation and Monte Carlo simulation for backward stochastic differential equations. Stoch. Process. Their Appl. 111, 175–206 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. B. Bouchard, X. Warin, Valuation of American options—new algorithm to improve on existing methods. Working paper, 2010

    Google Scholar 

  5. K. Burrage, P.M. Burrage, High strong order methods for non-commutative stochastic ordinary differential equation systems and the Magnus formula. Physica D 133(1–4), 34–48 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. K. Burrage, P.M. Burrage, T. Tian, Numerical methods for strong solutions of stochastic differential equations: An overview. Proc. R. Soc. Lond. A 460, 373–402 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. F. Castell, Asymptotic expansion of stochastic flows. Probab. Theory Relat. Fields 96, 225–239 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Castell, J. Gaines, An efficient approximation method for stochastic differential equations by means of exponential lie series. Math. Comput. Simul. 38(1), 13–19 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Cheridito, M. Soner, N. Touzi, N. Victoir, Second-order backward stochastic differential equations and fully non linear parabolic PDEs. Commun. Pure Appl. Math. 60(7), 1081–1110 (2007)

    Article  MATH  Google Scholar 

  10. M. Clark, An efficient approximation for a class of stochastic differential equations, in Advances in Filtering and Optimal Stochastic Control, vol. 42. Lecture Notes in Control and Information Sciences (Springer, Berlin, 1982), pp. 69–78

    Google Scholar 

  11. M. Clark, Asymptotically optimal quadrature formulae for stochastic integrals, in Proceedings of the 23rd Conference on Decision and Control, Las Vegas, Nevada (IEEE, 1984), pp. 712–715

    Google Scholar 

  12. D. Crisan, F. Delarue, Sharp derivative bounds for solutions of degenerate semi-linear partial differential equations. J. Funct. Anal. 263(10), 3024–3101 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Crisan, S. Ghazali, On the Convergence Rate of a General Class of SDEs, (World Scientific, New Jersey, 2007), pp. 221–248

    MATH  Google Scholar 

  14. D. Crisan, T. Lyons, Minimal entropy approximations and optimal algorithms. Monte Carlo Methods Appl. 8(4), 343–355 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Crisan, K. Manolarakis, Numerical solution for a BSDE using the Cubature method. Application to non linear pricing. SIAM J. Financ. Math. 3, 534–571 (2012)

    Article  MATH  Google Scholar 

  16. N. El Karoui, C. Kapoudjan, E. Pardoux, M. Quenez, Reflected solutions of backward SDEs and related obstacle problems. Ann. Probab. 25(2), 702–737 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. N. El Karoui, S. Peng, M. Quenez, Backward stochastic differential equations in finance. Math. Financ. 7(1), 1–71 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. T. Fawcett, Problems in Stochastic Analysis: Connections between Rough Paths and Non-Commutative Harmonic Analysis. Ph.D. thesis, University of Oxford, 2003

    Google Scholar 

  19. S. Ghazali, The Global Error in Weak Approximations of Stochastic Differential Equations. Ph.D. thesis, Imperial College London, 2006

    Google Scholar 

  20. E. Gobet, C. Labart, Error expansion for the discretization of backward stochastic differential equations. Stoch. Process. Their Appl. 117(7), 803–829 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. E. Gobet, J.P. Lemor, X. Warin, A regression based Monte Carlo method to solve backward stochastic differential equations. Ann. Appl. Probab. 15(3), 2172–2002 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. L.G. Gyurkó, T.J. Lyons, Efficient and practical implementations of cubature on Wiener space, in Stochastic Analysis 2010 (Springer, Heidelberg, 2011), pp. 73–111

    MATH  Google Scholar 

  23. S.L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 6(2), 327–343 (1993)

    Article  Google Scholar 

  24. L. Hörmander, Hypoelliptic second order differential equations. Acta Math. 119, 147–171 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  25. D. Jerison, Sánchez-Calle, Estimates for the heat kernel for a sum of squares of vector fields. Indiana Univ. Math. 35(4), 835–854 (1986)

    Google Scholar 

  26. I. Karatzas, S. Shreve, Brownian Motion and Stochastic Calculus (Springer, New York, 1991)

    MATH  Google Scholar 

  27. P. Kloeden, E. Platen, Numerical Solutions of Stochastic Differential Equations (Springer, Berlin, 1999)

    MATH  Google Scholar 

  28. H. Kunita, Stochastic differential equations and stochastic flows of diffeomorphisms. Lect. Notes Math. 1097, 143–303 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  29. S. Kusuoka, Approximation of expectations of diffusion processes based on Lie algebra and Malliavin calculus. Adv. Math. Econ. (Springer, Tokyo) 6, 69–83 (2004)

    Google Scholar 

  30. S. Kusuoka, Malliavin Calculus revisited. J. Math. Sci. Univ. Tokyo 10, 261–277 (2003)

    MathSciNet  MATH  Google Scholar 

  31. S. Kusuoka, S. Ninomiya, A new simulation method of diffusion processes applied to finance, in Stochastic Processes and Applications to Mathematical Finance (World Scientific, River Edge, 2004), pp. 233–253

    Book  MATH  Google Scholar 

  32. S. Kusuoka, D. Stroock, Applications of the Malliavin calculus. I. Stochastic analysis (Katata/Kyoto, 1982). in North-Holland Math. Library, vol. 32 (North-Holland, Amsterdam, 1984), pp. 271–306

    Google Scholar 

  33. S. Kusuoka, D, Stroock, Applications of the Malliavin calculus - II. J. Faculty Sci. Univ. Tokyo 1, 1–76 (1985)

    Google Scholar 

  34. S. Kusuoka, D. Stroock, Applications of the Malliavin calculus III. J. Faculty Sci. Univ. Tokyo 34(1A), 391–422 (1987)

    MathSciNet  MATH  Google Scholar 

  35. C. Litterer, T. Lyons, High order recombination and an application to cubature on Wiener space. Ann. Appl. Probab. 22(4), 1301–1327 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. T. Lyons, N. Victoir, Cubature on Wiener space. Proc. R. Soc. Lond. 468, 169–198 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. J. Ma, J. Zhang, Representation theorems for backward stochastic differential equations. Ann. Appl. Probab. 12(4), 1390–1418 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. J. Ma, P. Protter, J. Yong, Solving forward–backward SDEs expicitly—a four step scheme. Probab. Theory Relat. fields 122(2), 163–190 (1994)

    Google Scholar 

  39. W. Magnus, On the exponential solution of differential equations for a linear operator. Commun. Pure Appl. Math. 7, 649–673 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  40. P. Malliavin, Stochastic calculus of variations and hypoelliptic operators, in Proceedings of the International Symposium on Stochastic Differential Equations, Kyoto, 1976

    Google Scholar 

  41. A. Millet, M. Sanz-Sole, A simple proof of the support theorem for diffusion processes, Séminaire de probabilitiés, XXVIII 1583, 36–48 (1994)

    MATH  Google Scholar 

  42. G. Milstein, A method of second-order accuracy integration of stochastic differential equations. Theory Probab. Appl. 23, 396–401 (1976)

    Article  Google Scholar 

  43. G. Milstein, Weak approximation of solutions of systems of stochastic differential equations. Theory Probab. Appl. 30, 750–766 (1985)

    Article  MathSciNet  Google Scholar 

  44. C. Nee, Sharp Gradient Bounds for the Diffusion Semigroup. Ph.D. thesis, Imperial College London, 2011

    Google Scholar 

  45. N. Newton, An asymptotically efficient difference formula for solving stochastic differential equations. Stochastics 19(3), 175–206 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  46. N. Newton, An efficient approximation for stochastic differential equations on the partition of symmetrical first passage times. Stoch. Stoch. Rep. 29(2), 227–258 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  47. S. Ninomiya, A partial sampling method applied to the Kusuoka approximation. Mt. Carlo Methods Appl. 9(1), 27–38, (2003)

    Article  MathSciNet  MATH  Google Scholar 

  48. M. Ninomiya, S. Ninomiya, A new higher-order weak approximation scheme for stochastic differential equations and the Runge-Kutta method. Financ. Stoch. 13(3), 415–443 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  49. S. Ninomyia, N. Victoir, Weak approximation scheme of stochastic differential equations and applications to derivatives pricing. Appl. Math. Financ. 15(2), 107–121 (2008)

    Article  Google Scholar 

  50. J.R. Norris, Simplified Malliavin calculus. Séminaire de probabilités 20, 101–130 (1986)

    MathSciNet  MATH  Google Scholar 

  51. D. Nualart, in The Malliavin Calculus and Related Topics, 2nd edn. Probability and Its Applications, New York (Springer, Berlin, 2006)

    Google Scholar 

  52. E. Platen, W. Wagner, On a Taylor formula for a class of Itô processes. Probab. Math. Stat. 3, 37–51 (1982)

    MATH  Google Scholar 

  53. M. Soner, N. Touzi, Well posedness of second order backward SDEs. Stoch. Process. Their Appli. 121, 265–287 (2011)

    Article  Google Scholar 

  54. D.W. Stroock, S.R.S. Varadhan, Diffusion processes with continuous coefficients. Commun. Pure Appl. Math 22, 345–400 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  55. D.W. Stroock, S.R.S. Varadhan, On the support of diffusion processes with applications to the strong maximum principle, in Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, vol. 3. (1970), pp. 333–359, Probability Theory

    Google Scholar 

  56. D.W. Stroock, S.R.S. Varadhan, On degenerate elliptic-parabolic operators of second order and their associated diffusions. Commun. Pure. Appl. Math. 25, 651–713 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  57. D. Talay, Efficient numerical schemes for the approximation of expectations of functionals of the solution of an SDE and applications. Filter. Control Random Process. 61, 294–313 (1984)

    Article  MathSciNet  Google Scholar 

  58. D. Talay, Discrétisation d’une e.d.s. et calcul approché d’ésperances de fontionelles de la solution,. Math. Model. Numer. Anal. 20, 141–179 (1986)

    Google Scholar 

  59. D. Talay, L. Tubaro, Expansion of the global error for numerical schemes solving stochastic differential equations. Stoch. Anal. Appl. 8(4), 483–509 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  60. J. Zhang, A numerical scheme for BSDEs. Ann. Appl. Probab. 14(1), 459–488 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We should like to thank the editors of the volume, Vicky Henderson and Ronnie Sircar for their understanding and patience whilst handling our submission. One of the authors (D.C.) would like to thank Nizar Touzi for the invitation to give a series of lectures on the subject in February–April 2010 at the Institute Henri Poincaré. This work grew out of the notes of the IHP lectures. The material in the second section is based on the corresponding chapter in the PhD thesis of C. Nee [44]. The material in Sects. 3.1–3.3 is based on the paper [13].

The work of D. Crisan and K. Manolarakis was partially supported by the EPSRC Grant No: EP/H0005500/1. C. Nee’s work was supported by an EPSRC Doctoral Training Award.

Special thanks are due to Salvator Ortiz–Latorre who read large portions of the first draft and suggested many corrections and improvements. The authors would also like to thank the anonymous referee for the careful reading of the manuscript and the constructive remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Crisan .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Crisan, D., Manolarakis, K., Nee, C. (2013). Cubature Methods and Applications. In: Paris-Princeton Lectures on Mathematical Finance 2013. Lecture Notes in Mathematics, vol 2081. Springer, Cham. https://doi.org/10.1007/978-3-319-00413-6_4

Download citation

Publish with us

Policies and ethics