Skip to main content

Duty Factor and Leg Stiffness Models for the Design of Running Bipeds

  • Chapter
Advances in Mechanisms, Robotics and Design Education and Research

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 14))

Abstract

Supporting the design process for running biped robots, analytical models are presented for two aspects of running: the duty factor (DF) of the gait, and the stiffness value of the leg. For a given running speed, an optimal DF exists that minimizes the energy expenditure. We present a formula for the optimal DF based on a model of the energetics, and the results are compared to both human data and simulation results. In addition, a model is presented for the stiffness value of the leg as a function of the physical properties, speed, and DF. The Gait Resonance Point is proposed as a design target for compliant running. At this point, the gait matches the spring resonance and the stiffness value becomes independent of the DF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdallah, M.: Mechanics motivated control and design of biped running. Ph.D. dissertation, Stanford University, Stanford, CA (June 2007)

    Google Scholar 

  2. Ahmadi, M., Buehler, M.: Stable control of a simulated one-legged running robot with hip and leg compliance. IEEE Trans. on Robotics and Automation 13, 96–104 (1997)

    Article  Google Scholar 

  3. Ahmadi, M., Buehler, M.: The ARL Monopod II running robot: control and energetics. In: IEEE Intl. Conf. on Robotics and Automation, Detroit, MI, pp. 1689–1694 (May 1999)

    Google Scholar 

  4. Alexander, R.: Mechanics and scaling of terrestrial locomotion. In: Pedley, T.J. (ed.) Scale Effects in Animal Locomotion, ch. 6, pp. 93–110. Academic Press, London (1977)

    Google Scholar 

  5. Alexander, R.: Elastic Mechanisms in Animal Movement. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  6. Alexander, R.: A model of bipedal locomotion on compliant legs. Phil. Trans. of the Royal Society of London 338, 189–198 (1992)

    Google Scholar 

  7. Biewener, A.A.: Animal Locomotion. Oxford University Press, Oxford (2003)

    Google Scholar 

  8. Blickhan, R.: The spring-mass model for running and hopping. Journal of Biomechanics 22(11/12), 1217–1227 (1989)

    Article  Google Scholar 

  9. Boston Dynamics, Cheetah, http://www.bostondynamics.com/robot_cheetah.html

  10. Brown, B., Zeglin, G.: The bow leg hopping robot. In: IEEE Intl. Conf. on Robotics and Automation, Leuven, Belgium, pp. 781–786 (May 1998)

    Google Scholar 

  11. Cavagna, G., Kaneko, M.: Mechanical work and efficiency in level walking and running. Journal Physiology 268, 467–481 (1977)

    Google Scholar 

  12. Cotton, S., Olaru, I., Bellman, M., Ven, T., Godowski, J., Pratt, J.: Fastrunner: A fast, efficient and robust bipedal robot. In: IEEE Intl. Conf. on Robotics and Automation, St. Paul, MN (May 2012)

    Google Scholar 

  13. Farley, C.T., Glasheen, J., McMahon, T.A.: Running springs: speed and animal size. Journal of Experimental Biology 185, 71–86 (1993)

    Google Scholar 

  14. Full, R., Blickhan, R., Ting, L.: Leg design in hexapedal runners. Journal of Experimental Biology 158, 369–390 (1991)

    Google Scholar 

  15. Hirai, K., Hirose, M., Haikawa, Y., Takenaka, T.: The development of the Honda humanoid robot. In: IEEE Intl. Conf. on Robotics and Automation, Leuven, Belgium, pp. 1321–1326 (May 1998)

    Google Scholar 

  16. Hoyt, D., Taylor, R.: Gaits and the energetics of locomotion in horses. Nature 292, 239–240 (1981)

    Article  Google Scholar 

  17. Kajita, S., Nagasaki, T., Yokoi, K., Kaneko, K., Tanie, K.: Running pattern generation for a humanoid robot. In: IEEE Intl. Conf. on Robotics and Automation, Washington, DC (May 2002)

    Google Scholar 

  18. Kane, T., Levinson, D.: Dynamics Online: Theory and Implementation with AUTOLEV. Online Dynamics, Inc., Sunnyvale (1996)

    Google Scholar 

  19. McMahon, T.A., Cheng, G.C.: The mechanics of running: How does stiffness couple with speed? Journal of Biomechanics 23(suppl. 1), 65–78 (1990)

    Article  Google Scholar 

  20. Minetti, A.E.: A model equation for the prediction of mechanical internal work of terrestrial locomotion. Journal of Biomechanics 31, 463–468 (1998)

    Article  Google Scholar 

  21. Nagasaka, K., Kuroki, Y., Suzuki, S., Itoh, Y., Yamaguchi, J.: Integrated motion control for walking, jumping, and running on a small bipedal entertainment robot. In: IEEE Intl. Conf. on Robotics and Automation, New Orleans, LA (April 2004)

    Google Scholar 

  22. Nichol, J., Palmer, L., Waldron, K.: Design of a leg system for quadraped gallop. In: Huang, T. (ed.) Proceedings of the 11th Congress in Mechanism and Machine Science. China Machinery Press, Tianjin (2003)

    Google Scholar 

  23. Nishii, J.: An analytical study of the cost of transport for legged locomotion. In: Proceedings of the 2nd Intl. Symposium on Adaptive Motion of Animals and Machines, Kyoto, Japan (March 2003)

    Google Scholar 

  24. Park, H., Sreenath, K., Hurst, J., Grizzle, J.: Identification of a bipedal robot with a compliant drivetrain: Parameter estimation for control design. Control Systems Mag. 31 (April 2011)

    Google Scholar 

  25. Rad, H., Gregorio, P., Buehler, M.: Design, modeling and control of a hopping robot. In: IEEE/RSJ Conf. on Intelligent Systems and Robots, Yokohama, Japan, pp. 1778–1785 (July 1993)

    Google Scholar 

  26. Raibert, M.: Legged Robots that Balance. MIT Press, Cambridge (1986)

    Google Scholar 

  27. Raibert, M.: Running with symmetry. The Intl. Journal of Robotics Research 5(4) (1986)

    Google Scholar 

  28. Schmiedeler, J.P., Waldron, K.J.: Leg stiffness and articulated leg design for dynamic locomotion. In: Design Engineering Techinal Conf.s and Computers and Information in Engineering Conf. ASME, Montreal (2002)

    Google Scholar 

  29. Schwind, W.: Spring loaded inverted pendulum running: a plant model. Ph.D. dissertation, University of Michigan, Ann Arbor, MI (1998)

    Google Scholar 

  30. Thompson, C.M., Raibert, M.H.: Passive dynamic running. In: Hayward, V., Khatib, O. (eds.) Experimental Robotics I. LNCIS, vol. 139, pp. 74–83. Springer, Heidelberg (1989)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad E. Abdallah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Abdallah, M.E., Waldron, K.J. (2013). Duty Factor and Leg Stiffness Models for the Design of Running Bipeds. In: Kumar, V., Schmiedeler, J., Sreenivasan, S., Su, HJ. (eds) Advances in Mechanisms, Robotics and Design Education and Research. Mechanisms and Machine Science, vol 14. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00398-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00398-6_22

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00397-9

  • Online ISBN: 978-3-319-00398-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics