Skip to main content

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 14))

  • 4290 Accesses

Abstract

Articulated Wheeled Vehicles (AWVs) are a class of wheeled locomotion systems where the chassis is connected to a set of ground-contact wheels via actively- or passively-controlled articulations, which can regulate wheel placement with respect to chassis during locomotion. The ensuing leg-wheeled systems exploit the reconfigurability and redundancy to realize significant benefits (improved stability, obstacle surmounting capability, enhanced robustness) over both traditional wheeled-and/or legged-systems in a range of uneven-terrain locomotion applications. This article examines the history of such articulated-wheeled-vehicles leading up to the current day, while placing in context the pioneering and seminal contributions of Professor Kenneth Waldron and his students. Subsequently, we outline our own research efforts on variants of AWVs, including the creation of a systematic computational screw-theoretic framework to model, analyze, optimize and control such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. http://mechatronics.eng.buffalo.edu

  2. http://www.nasa.gov/multimedia/imagegallery/image_feature_748.html

  3. http://www.bluebotics.com/mobile-robotics/shrimp-3

  4. http://autsys.aalto.fi/en/WorkPartner/Media

  5. http://www.uni-due.de/alduro/index_en.shtml

  6. http://www.frc.ri.cmu.edu/projects/meteorobot/Nomad/Nomad.html

  7. http://www-robotics.jpl.nasa.gov/systems/systemImages.cfm?System=6

  8. Abou-Samah, M., Tang, C., Bhatt, R., Krovi, V.: A kinematically compatible framework for cooperative payload transport by nonholonomic mobile manipulators. Autonomous Robots 21(3), 227–242 (2006)

    Article  Google Scholar 

  9. Auchter, J., Moore, C.A., Ghosal, A.: A Novel Kinematic Model for Rough Terrain Robots. In: Ao, S.-I., Rieger, B., Chen, S.-S. (eds.) Advances in Computational Algorithms and Data Analysis. LNEE, vol. 14, pp. 215–234. Springer, Netherlands (2009)

    Chapter  Google Scholar 

  10. Bhatt, R.M., Tang, C.P., Krovi, V.N.: Formation optimization for a fleet of wheeled mobile robots a geometric approach. Robotics and Autonomous Systems 57(1), 102–120 (2009)

    Article  Google Scholar 

  11. Borenstein, J., Everett, H.R., Feng, L.: Navigating Mobile Robots: Sensors and Techniques (1996)

    Google Scholar 

  12. Bruyninckx, H., Schutter, J.D.: Unified kinetostatics for serial, parallel and mobile robots (1998)

    Google Scholar 

  13. Campion, G., Bastin, G., Dandrea-Novel, B.: Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Transactions on Robotics and Automation 12(1), 47–62 (1996)

    Article  Google Scholar 

  14. Chakraborty, N., Ghosal, A.: Kinematics of wheeled mobile robots on uneven terrain. Mechanism and Machine Theory 39(12), 1273–1287 (2004)

    Article  MATH  Google Scholar 

  15. Choi, B.J., Sreenivasan, S.V.: Gross motion characteristics of articulated mobile robots with pure rolling capability on smooth uneven surfaces. IEEE Transactions on Robotics and Automation 15(2), 340–343 (1999)

    Article  Google Scholar 

  16. Estier, T., Crausaz, Y., Merminod, B., Lauria, M., Piguet, R., Siegwart, R.: An innovative space rover with extended climbing abilities. In: Proceedings of the Space and Robotics

    Google Scholar 

  17. Fu, Q.: Kinematics of articulated wheeled robots: Exploiting reconfigurability and redundancy. M.s. thesis (2008)

    Google Scholar 

  18. Fu, Q., Krovi, V.: Articulated wheeled robots: Exploiting reconfigurability and redundancy. In: ASME 2008 Dynamic Systems and Control Conference, DSCC 2008 (2008)

    Google Scholar 

  19. Fu, Q., Zhou, X., Krovi, V.: The reconfigurable omnidirectional articulated mobile robot (ROAMeR). In: Khatib, O., Kumar, V., Sukhatme, G. (eds.) Experimental Robotics. STAR, vol. 79, pp. 871–882. Springer, Heidelberg (2012)

    Google Scholar 

  20. Grand, C., BenAmar, F., Plumet, F., Bidaud, P.: Decoupled control of posture and trajectory of the hybrid wheel-legged robot hylos. In: Proceedings of the 2004 IEEE International Conference on Robotics and Automation, ICRA 2004, vol. 5, pp. 5111–5116 (2004)

    Google Scholar 

  21. Hacot, H.: Analysis and traction control of a rocker-bogie planetary rover. M.s. thesis, MIT (1998)

    Google Scholar 

  22. Halme, A., Leppanen, I., Suomela, J., Ylonen, S., Kettunen, I.: Workpartner: Interactive human-like service robot for outdoor applications. The International Journal of Robotics Research 22(7-8), 627–640 (2003)

    Article  Google Scholar 

  23. Hiller, M., Germann, D.: Manoeuvrability of the legged and wheeled vehicle alduro in uneven terrain with consideration of nonholonomic constraints. In: Proceedings of 2002 International Symposium on Mechatronics (ISOM 2002) (2002)

    Google Scholar 

  24. Hirose, S.: Biologically inspired robots: snake-like locomotors and manipulators. Oxford University Press (1993)

    Google Scholar 

  25. Jun, S.K., White, G.D., Krovi, V.N.: Kinetostatic design considerations for an articulated leg-wheel locomotion subsystem. Journal of Dynamic Systems, Measurement, and Control 128(1), 112–121 (2006)

    Article  Google Scholar 

  26. Siegwart, R., Lamon, P., Estier, T., Lauria, M., Piguet, R.: Innovative design for wheeled locomotion in rough terrain. Robotics and Autonomous Systems 40(23), 151–162 (2002)

    Article  Google Scholar 

  27. Sreenivasan, S.V., Nanua, P.: Kinematic geometry of wheeled vehicle systems. Journal of Mechanical Design 121(1), 50–56 (1999)

    Article  Google Scholar 

  28. Sreenivasan, S.V., Waldron, K.J.: Displacement analysis of an actively articulated wheeled vehicle configuration with extensions to motion planning on uneven terrain. Journal of Mechanical Design 118(2), 312–317 (1996)

    Article  Google Scholar 

  29. Tang, C.P., Bhatt, R., Abou-Samah, M., Krovi, V.: Screw-theoretic analysis framework for cooperative payload transport by mobile manipulator collectives. IEEE/ASME Transactions on Mechatronics 11(2), 169–178 (2006), doi:10.1109/TMECH.2006.871092

    Article  Google Scholar 

  30. Tang, C.P., Krovi, V.N.: Manipulability-based configuration evaluation of cooperative payload transport by mobile manipulator collectives. Robotica 25(01), 29–42 (2007)

    Article  Google Scholar 

  31. Tang, C.P., Miller, P.T., Krovi, V.N., Ryu, J.C., Agrawal, S.K.: Differential-flatness-based planning and control of a wheeled mobile manipulator: Theory and experiment. IEEE/ASME Transactions on Mechatronics 16(4), 768–773 (2011)

    Article  Google Scholar 

  32. Waldron, K., McGhee, R.: The adaptive suspension vehicle. IEEE Control Systems Magazine 6(6), 7–12 (1986)

    Article  Google Scholar 

  33. Waldron, K.J.: Terrain adaptive vehicles. Journal of Mechanical Design 117(B), 107–112 (1995)

    Article  Google Scholar 

  34. West, M., Asada, H.: Design of ball wheel mechanisms for omnidirectional vehicles with full mobility and invariant kinematics. Journal of Mechanical Design 119(2), 153–161 (1997), doi:10.1115/1.2826230

    Article  Google Scholar 

  35. Wettergreen, D., Bualat, M., Christian, D., Schwehr, K., Thomas, H., Tucker, D., Zbinden, E.: Operating Nomad during the Atacama Desert Trek, ch. 14, pp. 82–89. Springer, London (1998)

    Google Scholar 

  36. White, G.D., Bhatt, R.M., Krovi, V.N.: Dynamic redundancy resolution in a nonholonomic wheeled mobile manipulator. Robotica 25(02), 147–156 (2007)

    Article  Google Scholar 

  37. White, G.D., Bhatt, R.M., Tang, C.P., Krovi, V.N.: Experimental evaluation of dynamic redundancy resolution in a nonholonomic wheeled mobile manipulator. IEEE/ASME Transactions on Mechatronics 14(3), 349–357 (2009)

    Article  Google Scholar 

  38. Zhou, X., Tang, C.P., Krovi, V.: Cooperating mobile cable robots: Screw theoretic analysis. In: Milutinović, D., Rosen, J. (eds.) Redundancy in Robot Manipulators. LNEE, vol. 57, pp. 109–123. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhou, X., Alamdari, A., Krovi, V. (2013). Articulated Wheeled Vehicles: Back to the Future?. In: Kumar, V., Schmiedeler, J., Sreenivasan, S., Su, HJ. (eds) Advances in Mechanisms, Robotics and Design Education and Research. Mechanisms and Machine Science, vol 14. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00398-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00398-6_17

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00397-9

  • Online ISBN: 978-3-319-00398-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics