Advertisement

Modelling Complex Multi-particle Transport: From Smooth Flow to Cluster Formation

  • Ko van der WeeleEmail author
  • Giorgos Kanellopoulos
Part of the Springer Proceedings in Complexity book series (SPCOM)

Abstract

One of the major problems with multi-particle flows is their tendency to spontaneously form clusters. This is a hot topic in contemporary science not only because of its fundamental interest but also because of its ubiquity in industrial applications and everyday life. Here we present a clear-cut method to model the clustering, dividing the available space in a grid of discrete cells and describing the dynamics from cell to cell by means of a flux function. The method is illustrated by two representative examples: the onset of clustering in granular flow on a conveyor belt and the formation of traffic jams on the highway. Further insight is gained by studying the continuum limit of the model.

Keywords

Pattern formation Granular transport Clustering 

Notes

Acknowledgements

This work is part of the research programme of the European Complexity-NET project “Complex Matter”, which is financially supported by the Greek General Secretariat for Research and Technology (GSRT).

References

  1. 1.
    Cross MC, Hohenberg PC (1993) Pattern formation outside of equilibrium. Rev Mod Phys 65:851–1112 ADSCrossRefGoogle Scholar
  2. 2.
    Goldhirsch I, Zanetti G (1993) Clustering instability in dissipative systems. Phys Rev Lett 70:1619–1622 ADSCrossRefGoogle Scholar
  3. 3.
    Jaeger H, Nagel S, Behringer R (1996) Granular solids, liquids, and gases. Rev Mod Phys 68:1259–1273 ADSCrossRefGoogle Scholar
  4. 4.
    Van der Weele K (2008) Granular gas dynamics: how Maxwell’s demon rules in a non-equilibrium system. Contemp Phys 49:157–178 ADSCrossRefGoogle Scholar
  5. 5.
    Kerner BS, Konhäuser P (1993) Cluster effect in initially homogeneous traffic flow. Phys Rev E 48:R2335 ADSCrossRefGoogle Scholar
  6. 6.
    Helbing D (2001) Traffic and related self-driven many-particle systems. Rev Mod Phys 73:1067–1141 ADSCrossRefGoogle Scholar
  7. 7.
    Nishinari K, Chowdhury D, Schadschneider A (2003) Cluster formation and anomalous fundamental diagram in an ant trail model. Phys Rev E 67:036120 ADSCrossRefGoogle Scholar
  8. 8.
    John A, Schadschneider A, Chowdhury D, Nishinari K (2009) Traffic-like collective movement of ants on trails: absence of jammed phase. Phys Rev Lett 102:108001 ADSCrossRefGoogle Scholar
  9. 9.
    Herman A (2011) Molecular-dynamics simulation of clustering processes in sea-ice floes. Phys Rev E 84:056104 ADSCrossRefGoogle Scholar
  10. 10.
    Eggers J (1999) Sand as Maxwell’s demon. Phys Rev Lett 83:5322–5325 ADSCrossRefGoogle Scholar
  11. 11.
    Van der Weele K, Van der Meer D, Versluis M, Lohse D (2001) Hysteretic clustering in granular gas. Europhys Lett 53:328–334 ADSCrossRefGoogle Scholar
  12. 12.
    Van der Weele K, Kanellopoulos G, Tsiavos C, Van der Meer D (2009) Transient granular shock waves and upstream motion on a staircase. Phys Rev E 80:011305 ADSCrossRefGoogle Scholar
  13. 13.
    Kanellopoulos G, Van der Weele K (2011) Subcritical pattern formation in granular flow. Int J Bifurc Chaos Appl Sci Eng 21:2305–2319 zbMATHCrossRefGoogle Scholar
  14. 14.
    Van der Weele K, Mikkelson R, Van der Meer D, Lohse D (2004) Cluster formation in compartmentalized granular gases. In: Hinrichsen H, Wolf DE (eds) The physics of granular media. Wiley, New York, pp 117–139 Google Scholar
  15. 15.
    Kanellopoulos G, Van der Weele K (2012) Critical flow and clustering in a model of granular transport: the interplay between drift and antidiffusion. Phys Rev E 85:061303 ADSCrossRefGoogle Scholar
  16. 16.
    Van der Meer D, Van der Weele K, Lohse D (2002) Sudden collapse of a granular cluster. Phys Rev Lett 88:174302 ADSCrossRefGoogle Scholar
  17. 17.
    Wolf DE, Schreckenberg ME, Bechem A (eds) (1996) Traffic and granular flow. World Scientific, Singapore. See also in: Schreckenberg ME, Wolf DE (eds) (1998) Traffic and granular flow ’97. Springer, Berlin; Helbing D et al (eds) (2000) Traffic and granular flow ’99. Springer, Berlin; Fukui M et al (eds) (2003) Traffic and granular flow ’01. Springer, Berlin; Hoogendoorn SP, Luding S, Bovy PHL, Schreckenberg M, Wolf DE (eds) (2005) Traffic and granular flow ’03. Springer, Berlin Google Scholar
  18. 18.
    Chowdhury D, Santen L, Schadschneider A (2000) Statistical physics of vehicular traffic and some related systems. Phys Rep 329:199–329 MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Van der Weele K, Spit W, Mekkes T, Van der Meer D (2005) From granular flux model to traffic flow description. In: Hoogendoorn SP, Luding S, Bovy PHL, Schreckenberg M, Wolf DE (eds) Traffic and granular flow ’03. Springer, Berlin, pp 569–578 CrossRefGoogle Scholar
  20. 20.
    Gledzer EB (1973) System of hydrodynamic type admitting two quadratic integrals of motion. Sov Phys Dokl 18:216–217. English translation from: Dokl Akad Nauk SSSR 209:1046–1048 (1973) ADSzbMATHGoogle Scholar
  21. 21.
    Ohkitani K, Yamada M (1989) Temporal intermittency in the energy cascade process and local Lyapunov analysis in fully-developed model turbulence. Prog Theor Phys 81:329–341 MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Yamada M, Ohkitani K (1987) Lyapunov spectrum of a chaotic model of three-dimensional turbulence. J Phys Soc Jpn 56:4210–4213 ADSCrossRefGoogle Scholar
  23. 23.
    Yamada M, Ohkitani K (1988) The inertial subrange and non-positive Lyapunov exponents in fully-developed turbulence. Prog Theor Phys 79:1265–1268 ADSCrossRefGoogle Scholar
  24. 24.
    Schorghöfer N, Kadanoff L, Lohse D (1995) How the viscous subrange determines inertial range properties in turbulence shell models. Physica D 88:40–54 MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kadanoff L, Lohse D, Schorghöfer N (1997) Scaling and linear response in the GOY turbulence model. Physica D 100:165–186 MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Center for Research and Applications of Nonlinear Systems, Department of MathematicsUniversity of PatrasPatrasGreece

Personalised recommendations