Comparative Analysis of Buoyancy- and Marangoni-Driven Convective Flows Around Autocatalytic Fronts

  • M. A. Budroni
  • L. Rongy
  • A. De Wit
Part of the Springer Proceedings in Complexity book series (SPCOM)


We introduce a reaction-diffusion-convection (RDC) model to study the combined effect of buoyancy- and Marangoni-driven flows around a traveling front. The model allows for a parametric control of the two contributions via the solutal Rayleigh number, Ra c , which rules the buoyancy component and the solutal Marangoni number, Ma c , governing the intensity of the velocity field at the interface between the reacting solution and air. Complex dynamics may arise when the bulk and the surface flows describe an antagonistic interplay. Typically, spatiotemporal oscillations are observed in the parameter region (Ra c <0, Ma c >0).


Marangoni Number Arsenous Acid Front Dynamic Fresh Reactant Solutal Rayleigh Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Field R, Burger M (1985) Oscillations and travelling waves in chemical systems. Wiley, New York Google Scholar
  2. 2.
    Kapral R, Showalter K (1994) Chemical waves and patterns. Kluwer Academic, Dordrecht Google Scholar
  3. 3.
    Sebestikova L, Hauser MJ (2012) Buoyancy-driven convection may switch between reactive states in three-dimensional chemical waves. Phys Rev E 85:036303 ADSCrossRefGoogle Scholar
  4. 4.
    Rossi F, Budroni MA, Marchettini N, Carballido-Landeira J (2012) Segmented waves in a reaction-diffusion-convection system. Chaos 22:037109 ADSCrossRefGoogle Scholar
  5. 5.
    Rongy L, De Wit A (2006) Steady Marangoni flow traveling with a chemical front. J Chem Phys 124:164705 ADSCrossRefGoogle Scholar
  6. 6.
    Rongy L, Goyal N, Meiburg E, De Wit A (2007) Buoyancy-driven convection around chemical fronts traveling in covered horizontal solution layers. J Chem Phys 127:114710 ADSCrossRefGoogle Scholar
  7. 7.
    Budroni M, Rongy L, De Wit A (2012) Dynamics due to combined buoyancy- and Marangoni-driven convective flows around autocatalytic fronts. Phys Chem Chem Phys 14:14619 CrossRefGoogle Scholar
  8. 8.
    Rongy L, Assemát P, De Wit A (2012) Marangoni-driven convection around exothermic autocatalytic chemical fronts in free-surface solution layers. Chaos 22:037106 ADSCrossRefGoogle Scholar
  9. 9.
    Budroni MA, Masia M, Rustici M, Marchettini N, Volpert V (2009) Bifurcations in spiral tip dynamics induced by natural convection in the Belousov–Zhabotinsky reaction. J Chem Phys 130:024902 ADSCrossRefGoogle Scholar
  10. 10.
    Rongy L, Schuszter G, Sinkó Z, Tóth T, Horváth D, Tóth A, De Wit A (2009) Influence of thermal effects on buoyancy-driven convection around autocatalytic chemical fronts propagating horizontally. Chaos 19:023110 ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • M. A. Budroni
    • 1
  • L. Rongy
    • 1
  • A. De Wit
    • 1
  1. 1.Nonlinear Physical Chemistry Unit, Service de Chimie Physique et Biologie Théorique, Faculté des SciencesUniversité Libre de Bruxelles (ULB)BrusselsBelgium

Personalised recommendations