Skip to main content

The Cyclopentadienes

  • Chapter
  • First Online:
  • 407 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Molecules possessing \(\pi \) electrons play a central role in organic photochemistry and photophysics [2]. In the previous chapter, we encountered examples of such molecules all containing the carbonyl chromophore. In this chapter, we will focus on non+aromatic molecules containing carbon-carbon double bonds, i.e. alkenes. Alkenes participate in a plethora of reactions induced by light such as photoisomerization [3–10], electrocyclic ring opening and closing [11–22], sigmatropic rearrangement [23–25], and cycloaddition [26, 27].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Strictly, the \(V\) labels of Mulliken refer to singly excited configurations, however, the \(V_2\) state mixes with a higher lying doubly excited configuration to attain partial doubly excited character, and we use the \(V_2\) label to refer to this state and character.

References

  1. T.S. Kuhlman, W.J. Glover, T. Mori, K.B. Møller, T.J. Martínez, Faraday Discuss. 157, 193–212 (2012)

    Google Scholar 

  2. N.J. Turro, V. Ramamurthy, J.C. Scaiano, Modern Molecular Photochemistry of Organic Molecules (University Science Books, Sausalito, 2010)

    Google Scholar 

  3. D.H. Waldeck, Chem. Rev. 91, 415–436 (1991)

    Article  CAS  Google Scholar 

  4. B.E. Kohler, Chem. Rev. 93, 41–54 (1993)

    Article  CAS  Google Scholar 

  5. M. Ben-Nun, T.J. Martínez, Chem. Phys. Lett. 298, 57–65 (1998)

    Article  CAS  Google Scholar 

  6. J. Quenneville, T.J. Martínez, J. Phys. Chem. A 107, 829–837 (2003)

    Article  CAS  Google Scholar 

  7. W. Fuß, C. Kosmidis, W.E. Schmid, S.A. Trushin, Angew. Chem. Int. Ed. 43, 4178–4182 (2004)

    Article  Google Scholar 

  8. C. Dugave, L. Demange, Chem. Rev. 103, 2475–2532 (2003)

    Article  CAS  Google Scholar 

  9. B.G. Levine, T.J. Martínez, Annu. Rev. Phys. Chem. 58, 613–634 (2007)

    Article  CAS  Google Scholar 

  10. M. Barbatti, M. Ruckenbauer, J.J. Szymczak, A.J.A. Aquino, H. Lischka, Phys. Chem. Chem. Phys. 10, 482–494 (2008)

    Article  CAS  Google Scholar 

  11. R. Hoffmann, R.B. Woodward, Acc. Chem. Res. 1, 17–22 (1968)

    Article  CAS  Google Scholar 

  12. R.B. Woodward, R. Hoffmann, Angew. Chem. Int. Ed. 8, 781–853 (1969)

    Article  CAS  Google Scholar 

  13. W. Fuß, W.E. Schmid, S.A. Trushin, J. Chem. Phys. 112, 8347–8362 (2000)

    Article  Google Scholar 

  14. M. Ben-Nun, T.J. Martínez, J. Am. Chem. Soc. 122, 6299–6300 (2000)

    Article  CAS  Google Scholar 

  15. A. Hofmann, R. de Vivie-Riedle, J. Chem. Phys. 112, 5054–5059 (2000)

    Article  CAS  Google Scholar 

  16. M. Garavelli, C.S. Page, P. Celani, M. Olivucci, W.E. Schmid, S.A. Trushin, W. Fuß, J. Phys. Chem. A 105, 4458–4469 (2001)

    Article  CAS  Google Scholar 

  17. R.C. Dudek, P.M. Weber, J. Phys. Chem. A 105, 4167–4171 (2001)

    Article  CAS  Google Scholar 

  18. N. Kuthirummal, F.M. Rudakov, C.L. Evans, P.M. Weber, J. Chem. Phys. 125, 133307 (2006)

    Article  Google Scholar 

  19. F.M. Rudakov, P.M. Weber, Chem. Phys. Lett. 470, 187–190 (2009)

    Article  CAS  Google Scholar 

  20. J. Bao, M.P. Minitti, P.M. Weber, J. Phys. Chem. A 115, 1508–1515 (2011)

    Article  CAS  Google Scholar 

  21. S. Deb, P.M. Weber, Annu. Rev. Phys. Chem. 62, 19–39 (2011)

    Article  CAS  Google Scholar 

  22. O. Schalk, A.E. Boguslavskiy, A. Stolow, M.S. Schuurman, J. Am. Chem. Soc. 133, 16451–16458 (2011)

    Article  CAS  Google Scholar 

  23. S.A. Trushin, S. Diemer, W. Fuß, K.L. Kompa, W.E. Schmid, Phys. Chem. Chem. Phys. 1, 1431–1440 (1999)

    Article  CAS  Google Scholar 

  24. W. Fuß, W.E. Schmid, S.A. Trushin, J. Am. Chem. Soc. 123, 7101–7108 (2001)

    Article  Google Scholar 

  25. W. Fuß, W.E. Schmid, S.A. Trushin, Chem. Phys. 316, 225–234 (2005)

    Article  Google Scholar 

  26. R.B. Woodward, R. Hoffmann, The Conservation of Orbital Symmetry (Verlag Chemie, Weinheim, 1970)

    Google Scholar 

  27. W.L. Dilling, Chem. Rev. 69, 845–877 (1969)

    Article  CAS  Google Scholar 

  28. L. Salem, Science 191, 822–830 (1976)

    Article  CAS  Google Scholar 

  29. B.S. Hudson, B.E. Kohler, K. Schulten, Linear polyene electronic structure and potential surfaces, in Excited States, vol. 6, ed. by E.C. Lim (Academic Press, New York, 1982), pp. 1–95

    Google Scholar 

  30. V. Vaida, R.E. Turner, J.L. Casey, S.D. Colson, Chem. Phys. Lett. 54, 25–29 (1978)

    Article  CAS  Google Scholar 

  31. L.J. Rothberg, D.P. Gerrity, V. Vaida, J. Chem. Phys. 73, 5508–5513 (1980)

    Article  CAS  Google Scholar 

  32. J.P. Doering, R. McDiarmid, J. Chem. Phys. 73, 3617–3624 (1980)

    Article  CAS  Google Scholar 

  33. J.P. Doering, R. McDiarmid, J. Chem. Phys. 75, 2477–2478 (1981)

    Article  CAS  Google Scholar 

  34. R. McDiarmid, J.P. Doering, Chem. Phys. Lett. 88, 602–606 (1982)

    Article  CAS  Google Scholar 

  35. R.R. Chadwick, D.P. Gerrity, B.S. Hudson, Chem. Phys. Lett. 115, 24–28 (1985)

    Article  CAS  Google Scholar 

  36. R.R. Chadwick, M.Z. Zgierski, B.S. Hudson, J. Chem. Phys. 95, 7204–7211 (1991)

    Article  CAS  Google Scholar 

  37. B.G. Levine, T.J. Martínez, J. Phys. Chem. A 113, 12815–12824 (2009)

    Article  CAS  Google Scholar 

  38. L.W. Pickett, E. Paddock, E. Sackter, J. Am. Chem. Soc. 63, 1073–1077 (1941)

    Article  CAS  Google Scholar 

  39. R.P. Frueholz, W.M. Flicker, O.A. Mosher, A. Kuppermann, J. Chem. Phys. 70, 2003–2013 (1979)

    Article  CAS  Google Scholar 

  40. A. Sabljić, R. McDiarmid, J. Chem. Phys. 93, 3850–3855 (1990)

    Article  Google Scholar 

  41. R. McDiarmid, A. Gedanken, J. Chem. Phys. 95, 2220–2221 (1991)

    Article  CAS  Google Scholar 

  42. R. McDiarmid, A. Sabljić, J.P. Doering, J. Chem. Phys. 83, 2147–2152 (1985)

    Article  CAS  Google Scholar 

  43. Q.-Y. Shang, B.S. Hudson, Chem. Phys. Lett. 183, 63–68 (1991)

    Article  CAS  Google Scholar 

  44. F.M. Rudakov, P.M. Weber, J. Phys. Chem. A 114, 4501–4506 (2010)

    Article  CAS  Google Scholar 

  45. O. Schalk, A.E. Boguslavskiy, A. Stolow, J. Phys. Chem. A 114, 4058–4064 (2010)

    Article  CAS  Google Scholar 

  46. R.S. Mulliken, Rev. Mod. Phys. 14, 265–274 (1942)

    Article  CAS  Google Scholar 

  47. M.B. Robin, Higher Excited States of Polyatomic Molecules, vol. 2 (Academic Press, New York, NY, 1975)

    Google Scholar 

  48. P.C. Hariharan, J.A. Pople, Theor. Chim. Acta 28, 213–222 (1973)

    Article  CAS  Google Scholar 

  49. M.M. Francl, W.J. Pietro, W.J. Hehre, J.S. Binkley, M.S. Gordon, D.J. DeFrees, J.A. Pople, J. Chem. Phys. 77, 3654–3665 (1982)

    Article  CAS  Google Scholar 

  50. Y.J. Bomble, K.W. Sattelmeyer, J.F. Stanton, J. Gauss, J. Chem. Phys. 121, 5236–5240 (2004)

    Article  CAS  Google Scholar 

  51. H. Nakatsuji, O. Kitao, T. Yonezawa, J. Chem. Phys. 83, 723–734 (1985)

    Article  CAS  Google Scholar 

  52. L. Serrano-Andrés, M. Merchán, I. Nebot-Gil, B.O. Roos, M. Fülscher, J. Am. Chem. Soc. 115, 6184–6197 (1993)

    Article  Google Scholar 

  53. H. Nakano, T. Tsuneda, T. Hashimoto, K. Hirao, J. Chem. Phys. 104, 2312–2320 (1996)

    Article  CAS  Google Scholar 

  54. J.D. Watts, S.R. Gwaltney, R.J. Bartlett, J. Chem. Phys. 105, 6979–6988 (1996)

    Article  CAS  Google Scholar 

  55. M. Schreiber, M.R. Silva-Junior, S.P.A. Sauer, W. Thiel, J. Chem. Phys. 128, 134110 (2008)

    Article  Google Scholar 

  56. J. Shen, S. Li, J. Chem. Phys. 131, 174101 (2009)

    Article  Google Scholar 

  57. M.J. Davis, E.J. Heller, J. Chem. Phys. 80, 5036–5048 (1984)

    Article  CAS  Google Scholar 

  58. K.B. Møller, A.H. Zewail, Chem. Phys. Lett. 295, 1–10 (1998)

    Article  Google Scholar 

  59. K.B. Møller, N.E. Henriksen, A.H. Zewail, J. Chem. Phys. 113, 10477–10485 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Scheby Kuhlman .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kuhlman, T.S. (2013). The Cyclopentadienes. In: The Non-Ergodic Nature of Internal Conversion. Springer Theses. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00386-3_8

Download citation

Publish with us

Policies and ethics