Skip to main content

The Cycloketones

  • Chapter
  • First Online:
The Non-Ergodic Nature of Internal Conversion

Part of the book series: Springer Theses ((Springer Theses))

  • 429 Accesses

Abstract

The carbonyl chromophore plays a central role in organic photochemistry and photophysics in particular due to the interplay between two types of excited states resulting from the promotion of an electron to the anti-bonding \(\pi ^*\) orbital from either the \(\pi \) or an \(n\) orbital [1]. Prominent examples of processes involving these states is the Norrish Type I \(\alpha \)-cleavage [2–5], the Norrish Type II intramolecular \(\gamma \)-hydrogen abstraction, and efficient intersystem crossing with a simultaneous change in the orbital angular momentum as established by El-Sayed’s selection rule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For \(\Delta t\le 15\,\mathrm{{ps}}\). For \(\Delta t>15\,\mathrm{{ps}}\), the spacing is 5 ps.

References

  1. N.J. Turro, V. Ramamurthy, J.C. Scaiano, Modern Molecular Photochemistry of Organic Molecules (University Science Books, Sausalito, 2010)

    Google Scholar 

  2. E.W.-G. Diau, C. Kötting, A.H. Zewail, ChemPhysChem 2, 273–293 (2001)

    Article  CAS  Google Scholar 

  3. E.W.-G. Diau, C. Kötting, A.H. Zewail, ChemPhysChem 2, 294–309 (2001)

    Article  CAS  Google Scholar 

  4. E.W.-G. Diau, C. Kötting, T.I. Sølling, A.H. Zewail, ChemPhysChem 3, 57–78 (2002)

    Article  CAS  Google Scholar 

  5. T.I. Sølling, E.W.-G. Diau, C. Kötting, S. De Feyter, A.H. Zewail, ChemPhysChem 3, 79–97 (2002)

    Article  Google Scholar 

  6. M.A. El-Sayed, J. Chem. Phys. 38, 2834–2838 (1963)

    Article  CAS  Google Scholar 

  7. S.K. Lower, M.A. El-Sayed, Chem. Rev. 66, 199–241 (1966)

    Article  CAS  Google Scholar 

  8. M.A. El-Sayed, Acc. Chem. Res. 1, 8–16 (1968)

    Article  CAS  Google Scholar 

  9. M. O’Sullivan, A.C. Testa, J. Phys. Chem. 77, 1830–1833 (1973)

    Article  Google Scholar 

  10. T.J. Cornish, T. Baer, J. Am. Chem. Soc. 109, 6915–6920 (1987)

    Article  CAS  Google Scholar 

  11. T.J. Cornish, T. Baer, J. Am. Chem. Soc. 110, 3099–3106 (1988)

    Article  CAS  Google Scholar 

  12. L. O’Toole, P. Brint, C. Kosmidis, G. Boulakis, P. Tsekeris, J. Chem. Soc. Faraday Trans. 87, 3343–3351 (1991)

    Article  Google Scholar 

  13. L. O’Toole, P. Brint, C. Kosmidis, G. Boulakis, A. Bolovinos, J. Chem. Soc. Faraday Trans. 88, 1237–1243 (1992)

    Article  Google Scholar 

  14. T.S. Kuhlman, T.I. Sølling, K.B. Møller, ChemPhysChem 13, 820–827 (2012)

    Google Scholar 

  15. T.S. Kuhlman, M. Pittelkow, T.I. Sølling, K.B. Møller, Angew. Chem. Int. Ed. 52, 2247–2250 (2013)

    Google Scholar 

  16. M. Bixon, J. Jortner, J. Chem. Phys. 48, 715–726 (1968)

    Article  CAS  Google Scholar 

  17. R. Englman, J. Jortner, Mol. Phys. 18, 145–164 (1970)

    Article  CAS  Google Scholar 

  18. T.R. Borgers, H.L. Strauss, J. Chem. Phys. 45, 947–955 (1966)

    Article  CAS  Google Scholar 

  19. D.C. Moule, J. Chem. Phys. 64, 3161–3168 (1976)

    Article  CAS  Google Scholar 

  20. K. Tamagawa, R.L. Hilderbrandt, J. Phys. Chem. 87, 5508–5516 (1983)

    Article  CAS  Google Scholar 

  21. T. Beyer, D.F. Swinehart, Commun. ACM 16, 379 (1973)

    Article  Google Scholar 

  22. R.A. Marcus, J. Chem. Phys. 20, 359–364 (1952)

    Article  CAS  Google Scholar 

  23. K.B. Møller, A.H. Zewail, Femtosecond activation of reactions: the concepts of nonergodic behavior and reduced-space dynamics, in Essays in Contemporary Chemistry: From Molecular Structure towards Biology, Chap. 5, ed. by G. Quinkert, M.V. Kisakürek (Verlag Helvetica Chimica Acta, Zürich, and Wiley-VCH, Weinheim, 2001), pp. 157–188

    Google Scholar 

  24. T.S. Kuhlman, S.P.A. Sauer, T.I. Sølling, K.B. Møller, J. Chem. Phys. 137, 22A522 (2012)

    Google Scholar 

  25. T.H. Dunning, J. Chem. Phys. 90, 1007–1023 (1989)

    Article  CAS  Google Scholar 

  26. R. Kosloff, H. Tal-Ezer, Chem. Phys. Lett. 127, 223–230 (1986)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Scheby Kuhlman .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kuhlman, T.S. (2013). The Cycloketones. In: The Non-Ergodic Nature of Internal Conversion. Springer Theses. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00386-3_7

Download citation

Publish with us

Policies and ethics