Skip to main content

Application: Image Deblurring for Optical Imaging

  • Chapter
  • First Online:
Compressed Sensing with Side Information on the Feasible Region

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

  • 1187 Accesses

Abstract

The problem of reconstruction of digital images from their blurred and noisy measurements is unarguably one of the central problems in imaging sciences. Despite its ill-posed nature, this problem can often be solved in a unique and stable manner, provided appropriate assumptions on the nature of the images to be discovered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that, in optical imaging, this function is also referred to as an impulse transfer function [7].

  2. 2.

    In this work, we use \(\delta = 0.5\).

References

  1. J. Primot, G. Rousset, J.C. Fontanella, Deconvolution from wave-front sensing: A new technique for compensating turbulence-degraded images. J. Opt. Soc. Am. 7, 1598–1608 (1990)

    Article  Google Scholar 

  2. M.C. Roggemann, B.M. Welsh, Imaging Through Turbulence (CRC Press, Boca Raton, 1996)

    Google Scholar 

  3. J. Yang, J. Wright, T.S. Huang, Y. Ma, Image super-resolution via sparse representation. IEEE Trans. Image Processing 19, 2861–2873 (2010)

    Article  MathSciNet  Google Scholar 

  4. M. Elad, M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Processing 17, 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  5. I.J. Mairal, G. Sapiro, M. Elad, Learning multiscale sparse representations for image and video restoration. Multiscale Modeling and Simulation 7, 214–241 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. R.T. Paul, Review of robust video watermarking techniques. IJCA Special Issue on Computational Science 3, 90–95 (2011)

    Google Scholar 

  7. G.D. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems (SPIE Optical Engineering Press, Bellingham, Washington, 2001)

    Book  Google Scholar 

  8. R.T. Paul, Blind deconvolution via cumulant extrema. IEEE Signal Processing Magazine 3, 24–42 (1996)

    Google Scholar 

  9. D. Kundur, D. Hatzinakos, Blind image deconvolution. IEEE Signal Processing Magazine 3, 43–64 (1996)

    Article  Google Scholar 

  10. J.K. Kauppinen, D.J. Moffatt, H.H. Mantsch, D.G. Cameron, Fourier self-deconvolution: A method for resolving intrinsically overlapped bands. Applied Spectroscopy 35, 271–276 (1981)

    Article  Google Scholar 

  11. S. Geman and D. Geman. Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images. IEEE Trans. Pattern Analysis and Machine Intelligence, PAMI-6:721–741, 1984

    Google Scholar 

  12. T. Poggio, V. Torre, C. Koch, Computational vision and regularization theory. Nature 317, 314–319 (1985)

    Article  Google Scholar 

  13. L.I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms. Phys. D 60, 259–268 (November 1992)

    Article  MATH  Google Scholar 

  14. A. Chambolle, An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision 20, 89–97 (2004)

    Article  MathSciNet  Google Scholar 

  15. T. Goldstein, S. Osher, The split Bregman method for \(l_1\)-regularized problems. SIAM J. Img. Sci. 2, 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Marquina, Nonlinear inverse scale space methods for total variation blind deconvolution. SIAM J. Img. Sci. 2, 64–83 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. L. He, A. Marquina, S. Osher, Blind deconvolution using TV regularization and Bregman iteration. International Journal of Imaging Systems and Technology 15, 74–83 (2005)

    Article  Google Scholar 

  18. O. Michailovich, A. Tannenbaum, Blind deconvolution of medical ultrasound images: Parametric inverse filtering approach. IEEE Trans. Image Processing 16(12), 3005–3019 (December 2007)

    Article  MathSciNet  Google Scholar 

  19. W.H. Richardson, Bayesian-based iterative method of image restoration. J. Opt. Soc. Am. A 62(1), 55–59 (1972)

    Article  Google Scholar 

  20. L.B. Lucy, An iterative technique for the rectification of observed distributions. Astron. J. 79(6), 745–754 (1974)

    Article  Google Scholar 

  21. P.A. Jansson, Deconvolution of Images and Spectra. Opt. Eng. 36, 3224 (1997)

    Google Scholar 

  22. M. J. Cullum. Adaptive Optics. European Southern, Observatory, 1996

    Google Scholar 

  23. D. Dayton, B. Pierson, B. Spielbusch, J. Gonglewski, Atmospheric structure function measurements with a Shack-Hartmann wave-front sensor. Journal of Mathematical Imaging and Vision 20, 89–97 (2004)

    Article  MathSciNet  Google Scholar 

  24. R.G. Lane, M. Tallon, Wave-front reconstruction using a Shack Hartmann sensor. Applied Optics 31, 6902–6908 (1992)

    Article  Google Scholar 

  25. R. Irwan, R.G. Lane, Analysis of optimal centroid estimation applied to Shack-Hartmann sensing. Applied Optics 38(32), 6737–6743 (1999)

    Article  Google Scholar 

  26. Y. Eldar, P. Kuppinger, H. Bölcskei, Block-sparse signals: Uncertainty relations and efficient recovery. IEEE Trans. Signal Process 58(6), 3042–3054 (2010)

    Article  MathSciNet  Google Scholar 

  27. D.L. Fried, Statistics of a geometric representation of wavefront distortion. J. Opt. Soc. Am. 55, 1427–1431 (1965)

    Article  MathSciNet  Google Scholar 

  28. V. Stanković, L. Stanković, and S. Cheng. Compressive image sampling with side information. In Proceedings of the 16th IEEE International Conference on Image Processing, ICIP’09, pages 3001–3004, 2009

    Google Scholar 

  29. T.O. Salmon, L.N. Thibos, A. Bradley, Comparison of the eyes wave-front aberration measured psychophysically and with the ShackHartmann wave-front sensor. Journal of the Optical Society of America A 15, 2457–2465 (2007)

    Article  Google Scholar 

  30. O. Michailovich, A. Tannenbaum, A fast approximation of smooth functions from samples of partial derivatives with application to phase unwrapping. Signal Processing 88, 358–374 (2008)

    Article  MATH  Google Scholar 

  31. M. Hosseini, O. Michailovich, Derivative compressive sampling with application to phase unwrapping (In Proceedings of EUSIPCO, Glasgow, UK, August, 2009)

    Google Scholar 

  32. I. Daubechies, Ten Lectures on Wavelets (SIAM, CBMS-NSF Reg. Conf. Series in Applied Math, 1992)

    Book  MATH  Google Scholar 

  33. D. L. Donoho and Y. Tsaig. Fast solution of \(l_1\)-norm minimization problems when the solution may be sparse. Technical Report 2006–18, Stanford, 2006

    Google Scholar 

  34. S. Osher, M. Burger, D. Goldfarb, J. Xu, W. Yin, An iterative regularization method for total variation-based image restoration. Simul 4, 460–489 (2005)

    MathSciNet  MATH  Google Scholar 

  35. A. Savitzky, M.J.E. Golay, Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639 (1964)

    Article  Google Scholar 

  36. A.N. Tikhonov, V.Y. Arsenin, Solutions of Ill-Posed Problem, vol. H (Winston, Washington, D.C., 1977)

    Google Scholar 

  37. Å. Björck, Numerical methods for least squares problems (SIAM, Philadelphia, 1996)

    Book  MATH  Google Scholar 

  38. A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences 2, 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. O. Michailovich, An iterative shrinkage approach to total-variation image restoration. IEEE Trans. Image Process 20(5), 1281–1299 (2011)

    Article  MathSciNet  Google Scholar 

  40. J.D. Schmidt, Numerical Simulation of Optical Wave Propagation with Examples in MATLAB (SPIE, Washington, 2010)

    Google Scholar 

  41. I. Daubchies, M. Defrise, C.D. Mol, An iterative thresholding algorithm for linear inverse problems with sparsity constraint. Comm. Pure Appl. Math. 75, 1412–1457 (2009)

    Google Scholar 

  42. Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process 13(4), 600–612 (2004)

    Article  Google Scholar 

  43. Z. Wang, A.C. Bovik, Mean squared error: Love it or leave it? - A new look at signal fidelity measures. IEEE Signal Processing Magazine 26(1), 98–117 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Rostami .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Rostami, M. (2013). Application: Image Deblurring for Optical Imaging. In: Compressed Sensing with Side Information on the Feasible Region. SpringerBriefs in Electrical and Computer Engineering. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00366-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00366-5_4

  • Published:

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00365-8

  • Online ISBN: 978-3-319-00366-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics