Skip to main content

Requirements for an Invasive Sensor

  • Chapter
  • First Online:
Biosensors and Invasive Monitoring in Clinical Applications

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 1006 Accesses

Abstract

Biosensors are defined as analytical devices that combine a biological component (biorecognition) with a physicochemical detector (transducer) capable of converting the analyte into a quantifiable signal. Biosensors for in vivo monitoring have been extensively studied and the literature contains a vast amount of papers describing biosensor’s features, requirements and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe M, Murata K, Ataka T, Matsumoto K (2008) Calibration method for a carbon nanotube field-effect transistor biosensor. Nanotechnology 19

    Google Scholar 

  • Ahmed S, Rigby GP, Crump P, Vadgama PM (2000) Comparative assessment of chemical and gamma-irradiation procedures for implantable glucose enzyme electrodes. Biosens Bioelectron 15:159–165

    Article  Google Scholar 

  • Brown FO, Lowry JP (2003) Microelectrochemical sensors for in vivo brain analysis: An investigation of procedures for modifying Pt electrodes using Nafion®. Analyst 128:700–705

    Article  Google Scholar 

  • Campàs M, Prieto-Simón B, Marty JL (2009) A review of the use of genetically engineered enzymes in electrochemical biosensors. Semin Cell Dev Biol 20:3–9

    Article  Google Scholar 

  • Choleau C, Klein JC, Reach G, Aussedat B, Demaria-Pesce V, Wilson GS, Gifford R, Ward WK (2002) Calibration of a subcutaneous amperometric glucose sensor implanted for 7 days in diabetic patients: part 2. Superiority of the one-point calibration method. Biosens Bioelectron 17:647–654

    Article  Google Scholar 

  • Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann NY Acad Sci 102:29–45

    Article  Google Scholar 

  • Colman RW (1993) Chapter 3 Mechanisms of thrombus formation and dissolution. Cardiovasc Pathol 2:23–31

    Article  Google Scholar 

  • Dungel P, Long N, Yu B, Moussy Y, Moussy F (2008) Study of the effects of tissue reactions on the function of implanted glucose sensors. J Biomed Mater Res, Part A 85:699–706

    Article  Google Scholar 

  • Frasconi M, Mazzei F, Ferri T (2010) Protein immobilization at gold-thiol surfaces and potential for biosensing. Anal Bioanal Chem 398:1545–1564

    Article  Google Scholar 

  • Frost M, Meyerhoff ME (2006) In vivo chemical sensors: tackling biocompatibility. Anal Chem 78:7370–7377

    Article  Google Scholar 

  • Gifford R, Kehoe JJ, Barnes SL, Kornilayev BA, Alterman MA, Wilson GS (2006) Protein interactions with subcutaneously implanted biosensors. Biomaterials 27:2587–2598

    Article  Google Scholar 

  • Greenbaum AR, Jarvis JC, O’Hare D, Manek S, Green CJ, Pepper JR, Winlove CP, Salmons S (2000) Oxygenation and perfusion of rabbit tibialis anterior muscle subjected to different patterns of electrical stimulation. J Muscle Res Cell Motil 21:285–291

    Article  Google Scholar 

  • Hashemi P, Walsh PL, Guillot TS, Gras-Najjar J, Takmakov P, Crews FT, Wightman RM (2011) Chronically implanted, nafion-coated Ag/AgCl reference electrodes for neurochemical applications. ACS Chem Neurosci 2:658–666

    Article  Google Scholar 

  • Hernandez K, Fernandez-Lafuente R (2011) Control of protein immobilization: Coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance. Enzyme Microb Technol 48:107–122

    Article  Google Scholar 

  • Ishikawa FN, Curreli M, Chang HK, Chen PC, Zhang R, Cote RJ, Thompson ME, Zhou C (2009) A calibration method for nanowire biosensors to suppress device-to-device variation. ACS Nano 3:3969–3976

    Article  Google Scholar 

  • Jeong RA, Hwang JY, Joo S, Chung TD, Park S, Kang SK, Lee WY, Kim HC (2003) In vivo calibration of the subcutaneous amperometric glucose sensors using a non-enzyme electrode. Biosens Bioelectron 19:313–319

    Article  Google Scholar 

  • Joshi A, Solanki S, Chaudhari R, Bahadur D, Aslam M, Srivastava R (2011) Multifunctional alginate microspheres for biosensing, drug delivery and magnetic resonance imaging. Acta Biomater 7:3955–3963

    Google Scholar 

  • Kane RS, Banerjee I, Pangule RC (2011) Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 23:690–718

    Article  Google Scholar 

  • Kotanen CN, Moussy FG, Carrara S, Guiseppi-Elie A (2012) Implantable enzyme amperometric biosensors. Biosens Bioelectron 35:14–26

    Article  Google Scholar 

  • Kvist PH, Bielecki M, Gerstenberg M, Rossmeisl C, Jensen HE, Rolin B, Hasselager E (2006) Evaluation of subcutaneously implanted glucose sensors for continuous glucose measurements in hyperglycemic pigs. In Vivo 20:195–204

    Google Scholar 

  • Llaudet E, Hatz S, Droniou M, Dale N (2005) Microelectrode biosensor for real-time measurement of ATP in biological tissue. Anal Chem 77:3267–3273

    Article  Google Scholar 

  • Masson JF, Kranz C, Mizaikoff B, Gauda EB (2008) Amperometric ATP microbiosensors for the analysis of chemosensitivity at rat carotid bodies. Anal Chem 80:3991–3998

    Article  Google Scholar 

  • Morais JM, Papadimitrakopoulos F, Burgess DJ (2010) Biomaterials/tissue interactions: possible solutions to overcome foreign body response. AAPS J 12:188–196

    Article  Google Scholar 

  • Nöll T, Nöll G (2011) Strategies for “wiring” redox-active proteins to electrodes and applications in biosensors, biofuel cells, and nanotechnology. Chem Soc Rev 40:3564–3576

    Article  Google Scholar 

  • Pfeiffer D, Möller B, Klimes N, Szeponik J, Fischer S (1997) Amperometric lactate oxidase catheter for real-time lactate monitoring based on thin film technology. Biosens Bioelectron 12:539–550

    Article  Google Scholar 

  • Pijanowska DG, Torbicz WA (2008) Ion selective and semi-permeable membranes for biosensors in biomedical applications. Biocybern Biomed Eng 28:11–19

    Google Scholar 

  • Romero MR, Ahumada F, Garay F, Baruzzi AM (2010) Amperometric biosensor for direct blood lactate detection. Anal Chem 82:5568–5572

    Article  Google Scholar 

  • Sassolas A, Blum LJ, Leca-Bouvier BD (2012) Immobilization strategies to develop enzymatic biosensors. Biotechnol Adv 30:489–511

    Article  Google Scholar 

  • Siqueira JR JR, Caseli L, Crespilho FN, Zucolotto V, Oliveira JR ON (2010) Immobilization of biomolecules on nanostructured films for biosensing. Biosens Bioelectron 25:1254–1263

    Google Scholar 

  • Srivastava R, Jayant RD, Chaudhary A, McShane MJ (2011) “Smart tattoo” glucose biosensors and effect of coencapsulated anti-inflammatory agents. J Diabetes Sci Technol 5:76–85

    Google Scholar 

  • Steiner M-S, Duerkop A, Wolfbeis OS (2011) Optical methods for sensing glucose. Chem Soc Rev 40:4805–4839

    Article  Google Scholar 

  • Vaddiraju S, Tomazos I, Burgess DJ, Jain FC, Papadimitrakopoulos F (2010) Emerging synergy between nanotechnology and implantable biosensors: a review. Biosens Bioelectron 25:1553–1565

    Article  Google Scholar 

  • Vadgama P (2007) Sensor biocompatibility: final frontier in bioanalytical measurement. Analyst 132:495–499

    Article  Google Scholar 

  • von Woedtke T, Jülich WD, Hartmann V, Stieber M, Abel PU (2002) Sterilization of enzyme glucose sensors: problems and concepts. Biosens Bioelectron 17:373–382

    Article  Google Scholar 

  • Wahono N, Qin S, Oomen P, Cremers TIF, de Vries MG, Westerink BHC (2012) Evaluation of permselective membranes for optimization of intracerebral amperometric glutamate biosensors. Biosens Bioelectron 33:260–266

    Article  Google Scholar 

  • Wang J (2008) In vivo glucose monitoring: towards ‘Sense and Act’ feedback-loop individualized medical systems. Talanta 75:636–641

    Article  Google Scholar 

  • Ward WK, Li AG, Siddiqui Y, Federiuk IF, Wang XJ (2008) Increased expression of Interleukin-13 and connective tissue growth factor, and their potential roles during foreign body encapsulation of subcutaneous implants. J Biomater Sci Polym Ed 19:1065–1072

    Article  Google Scholar 

  • Wilson GS, Gifford R (2005) Biosensors for real-time in vivo measurements. Biosens Bioelectron 20:2388–2403

    Article  Google Scholar 

  • Wilson GS, Hu Y (2000) Enzyme-based biosensors for in vivo measurements. Chem Rev 100:2693–2704

    Article  Google Scholar 

  • Wilson GS, Johnson MA (2008) In-vivo electrochemistry: what can we learn about living systems? Chem Rev 108:2462–2481

    Article  Google Scholar 

  • Wisniewski N, Reichert M (2000) Methods for reducing biosensor membrane biofouling. Colloids Surf, B 18:197–219

    Article  Google Scholar 

  • Zayats M, Willner B, Willner I (2008) Design of amperometric biosensors and biofuel cells by the reconstitution of electrically contacted enzyme electrodes. Electroanalysis 20:583–601

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma P. Córcoles .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Córcoles, E.P., Boutelle, M.G. (2013). Requirements for an Invasive Sensor. In: Biosensors and Invasive Monitoring in Clinical Applications. SpringerBriefs in Applied Sciences and Technology. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00360-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00360-3_3

  • Published:

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00359-7

  • Online ISBN: 978-3-319-00360-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics