Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 978 Accesses

Abstract

With the advance in nanotechnology and the use of materials such as silicon and CNT with excellent mechanical, optical and electrochemical properties, the factor that prevents the widespread use of implantable devices for clinical monitoring is their low reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arosio D, Ricci F, Marchetti L, Gualdani R, Albertazzi L, Beltram F (2010) Simultaneous intracellular chloride and pH measurements using a GFP-based sensor. Nat Methods 7:516–518

    Article  Google Scholar 

  • Byrne R, Benito-Lopez F, Diamond D (2010) Materials science and the sensor revolution. Mater Today 13:16–23

    Article  Google Scholar 

  • Daniel KD, Kim GY, Vassiliou CC, Galindo M, Guimaraes AR, Weissleder R, Charest A, Langer R, Cima MJ (2009) Implantable diagnostic device for cancer monitoring. Biosens Bioelectron 24:3252–3257

    Article  Google Scholar 

  • de la Rica R, Aili D, Stevens MM (2012) Enzyme-responsive nanoparticles for drug release and diagnostics. Adv Drug Deliv Rev 64:967–978

    Article  Google Scholar 

  • Gultepe E, Nagesha D, Sridhar S, Amiji M (2010) Nanoporous inorganic membranes or coatings for sustained drug delivery in implantable devices. Adv Drug Deliv Rev 62:305–315

    Article  Google Scholar 

  • Hovorka R (2011) Closed-loop insulin delivery: from bench to clinical practice. Nat Rev Endocrinol 7:385

    Article  Google Scholar 

  • Kaputa D, Price D, Enderle JD (2010) A portable, inexpensive, wireless vital signs monitoring system. Biomed Instrum Technol 44:350–353

    Article  Google Scholar 

  • Labroo P, Cui Y (2013) Flexible graphene bio-nanosensor for lactate. Biosens Bioelectron 41:852–856

    Article  Google Scholar 

  • Lee H, Sun E, Ham D, Weissleder R (2008) Chip-NMR biosensor for detection and molecular analysis of cells. Nat Med 14:869–874

    Article  Google Scholar 

  • Macvittie K, Halamek J, Halamkova L, Southcott M, Jemison WD, Lobel R, Katz E (2013) From “cyborg” lobsters to a pacemaker powered by implantable biofuel cells. Energy Environ Sci 6:81–86

    Article  Google Scholar 

  • Malecha K, Pijanowska DG, Golonka LJ, Kurek P (2011) Low temperature co-fired ceramic (LTCC)-based biosensor for continuous glucose monitoring. Sens Actuators B Chem 155:923–929

    Article  Google Scholar 

  • McLamore ES, Mohanty S, Shi J, Claussen J, Jedlicka SS, Rickus JL, Porterfield DM (2010) A self-referencing glutamate biosensor for measuring real time neuronal glutamate flux. J Neurosci Methods 189:14–22

    Article  Google Scholar 

  • Plaxco KW, Soh HT (2011) Switch-based biosensors: a new approach towards real-time, in vivo molecular detection. Trends Biotechnol 29:1–5

    Article  Google Scholar 

  • Pumera M (2011) Graphene in biosensing. Mater Today 14:308–315

    Article  Google Scholar 

  • Ramanavicius A, Kausaite A, Ramanaviciene A (2008) Enzymatic biofuel cell based on anode and cathode powered by ethanol. Biosens Bioelectron 24:761–766

    Article  Google Scholar 

  • Rogers M, Leong C, Niu X, de Mello A, Parker KH, Boutelle MG (2011) Optimisation of a microfluidic analysis chamber for the placement of microelectrodes. Phys Chem Chem Phys 13:5298–5303

    Article  Google Scholar 

  • Shi J, McLamore ES, Marshall Porterfield D (2013) Nanomaterial based self-referencing micro-biosensors for cell and tissue physiology research. Biosens Bioelectron 40:127–134

    Article  Google Scholar 

  • Vlandas A, Kurkina T, Ahmad A, Kern K, Balasubramanian K (2010) Enzyme-free sugar sensing in microfluidic channels with an affinity-based single-wall carbon nanotube sensor. Anal Chem 82:6090–6097

    Article  Google Scholar 

  • Yin R, Han J, Zhang J, Nie J (2010) Glucose-responsive composite microparticles based on chitosan, concanavalin A and dextran for insulin delivery. Colloids Surf B 76:483–488

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma P. Córcoles .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Córcoles, E.P., Boutelle, M.G. (2013). Conclusion and Future Trends. In: Biosensors and Invasive Monitoring in Clinical Applications. SpringerBriefs in Applied Sciences and Technology. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00360-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00360-3_11

  • Published:

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00359-7

  • Online ISBN: 978-3-319-00360-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics