Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

Microdialysis advancement from research tool to clinical device occurred during the early 1990s when CMA Microdialysis (Solna, Sweden) marketed the microdialysis catheter and the bedside dialysate analyser. Since then, microdialysis has been recognised as an important technique for point of care and home care monitoring. Microdialysis advantages over other point of care devices are manifested through the continuous sampling and the absence of intensive human intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamsson P, Åberg AM, Johansson G, Winsö O, Waldenström A, Haney M (2011) Detection of myocardial ischaemia using surface microdialysis on the beating heart. Clin Physiol Funct Imaging 31:175–181

    Article  Google Scholar 

  • Ao X, Stenken JA (2006) Microdialysis sampling of cytokines. Methods 38:331–341

    Article  Google Scholar 

  • Baumeister FAM, Hack A, Busch R (2006) Glucose-monitoring with continuous subcutaneous microdialysis in neonatal diabetes mellitus. Klin Padiatr 218:230–232

    Article  Google Scholar 

  • Beardsall K (2010) Measurement of glucose levels in the newborn. Early Human Dev 86:263–267

    Article  Google Scholar 

  • Bhatia R, Hashemi P, Razzaq A, Parkin MC, Hopwood SE, Boutelle MG, Strong AJ (2006) Application of rapid-sampling, online microdialysis to the monitoring of brain metabolism during aneurysm surgery. Neurosurgery 58:313–320

    Article  Google Scholar 

  • Bramlett HM, Dietrich WD (2004) Pathophysiology of cerebral ischemia and brain trauma: similarities and differences. J Cereb Blood Flow Metab 24:133–150

    Article  Google Scholar 

  • Caesar K, Hashemi P, Douhou A, Bonvento G, Boutelle MG, Walls AB, Lauritzen M (2008) Glutamate receptor-dependent increments in lactate, glucose and oxygen metabolism evoked in rat cerebellum in vivo. J Physiol 586:1337–1349

    Article  Google Scholar 

  • Cecil S, Chen PM, Callaway SE, Rowland SM, Adler DE, Chen JW (2011) Traumatic brain injury advanced multimodal neuromonitoring from theory to clinical practice. Crit Care Nurse 31:25–37

    Article  Google Scholar 

  • Cibicek N, Zivna H, Vrublova E, Cibicek J, Cermakova E, Palicka V (2010) Gastric submucosal Microdialysis in the detection of rat stomach ischemia-a comparison of the 3H2O efflux technique with metabolic monitoring. Physiol Meas 31:1355–1368

    Article  Google Scholar 

  • Clough GF, Jackson CL, Lee JJP, Jamal SC, Church MK (2007) What can microdialysis tell us about the temporal and spatial generation of cytokines in allergen-induced responses in human skin in vivo? J Invest Dermatol 127:2799–2806

    Google Scholar 

  • Córcoles EP, Deeba S, Hanna GB, Paraskeva P, Boutelle MG, Darzi A (2011) Use of online rapid sampling microdialysis electrochemical biosensor for bowel anastomosis monitoring in swine model. Anal Methods 3:2010–2016

    Article  Google Scholar 

  • Deeba S, Corcoles EP, Hanna BG, Pareskevas P, Aziz O, Boutelle MG, Darzi A (2008) Use of rapid sampling microdialysis for intraoperative monitoring of bowel ischemia. Dis Colon Rectum 51:1408–1413

    Article  Google Scholar 

  • Douglas A, Udy AA, Wallis SC, Jarrett P, Stuart J, Lassig-Smith M, Deans R, Roberts MS, Taraporewalla K, Jenkins J, Medley G, Lipman J, Roberts JA (2011) Plasma and tissue pharmacokinetics of cefazolin in patients undergoing elective and semielective abdominal aortic aneurysm open repair surgery. Antimicrob Agents Chemother 55:5238–5242

    Article  Google Scholar 

  • Feichtner F, Schaller R, Fercher A, Ratzer M, Ellmerer M, Plank J, Krause B, Pieber T, Schaupp L (2010) Microdialysis based device for continuous extravascular monitoring of blood glucose. Biomed Microdevices 12:399–407

    Article  Google Scholar 

  • Feuerstein D, Manning A, Hashemi P, Bhatia R, Fabricius M, Tolias C, Pahl C, Ervine M, Strong AJ, Boutelle MG (2010) Dynamic metabolic response to multiple spreading depolarizations in patients with acute brain injury: an online microdialysis study. J Cereb Blood Flow Metab 30:1343–1355

    Article  Google Scholar 

  • Fonouni H, Jarahian P, Rad MT, Golriz M, Faridar A, Esmaeilzadeh M, Hafezi M, Macher-Goeppinger S, Longerich T, Orakcioglu B, Sakowitz OW, Garoussi C, Mehrabi A (2013) Evaluating the effects of extended cold ischemia on interstitial metabolite in grafts in kidney transplantation using microdialysis. Langenbecks Arch Surg 398:87–97

    Article  Google Scholar 

  • Goodman JC, Robertson CS (2009) Microdialysis: is it ready for prime time? Curr Opin Crit Care 15:110–117

    Article  Google Scholar 

  • Hartings JA, Strong AJ, Fabricius M, Manning A, Bhatia R, Dreier JP, Mazzeo AT, Tortella FC, Bullock MR (2009) Spreading depolarizations and late secondary insults after traumatic brain injury. J Neurotrauma 26:1857–1866

    Article  Google Scholar 

  • Hashemi P, Bhatia R, Nakamura H, Dreier JP, Graf R, Strong AJ, Boutelle MG (2009) Persisting depletion of brain glucose following cortical spreading depression, despite apparent hyperaemia: evidence for risk of an adverse effect of Leão’s spreading depression. J Cereb Blood Flow Metab 29:166–175

    Article  Google Scholar 

  • Heise HM, Kondepati VR, Damm U, Licht M, Feichtner F, Mader JK, Ellmerer M (2008) Microdialysis based monitoring of subcutaneous interstitial and venous blood glucose in type 1 diabetic subjects by mid-infrared spectrometry for intensive insulin therapy. Progress in Biomedical Optics and Imaging—Proceedings of SPIE, Vol. 6863, Article No. 686308

    Google Scholar 

  • Hermanns N, Kulzer B, Gulde C, Eberle H, Pradler E, Patzelt-Bath A, Haak T (2009) Short-term effects on patient satisfaction of continuous glucose monitoring with the glucoday with real-time and retrospective access to glucose values: a crossover study. Diabetes Technol Ther 11:275–281

    Article  Google Scholar 

  • Högberg N, Carlsson PO, Hillered L, Meurling S, Stenbäck A (2012) Intestinal ischemia measured by intraluminal microdialysis. Scand J Clin Lab Invest 72:59–66

    Article  Google Scholar 

  • Isaksson B, D’Souza MA, Jersenius U, Ungerstedt J, Lundell L, Permert J, Björnstedt M, Nowak G (2011) Continuous assessment of intrahepatic metabolism by microdialysis during and after portal triad clamping. J Surg Res 169:214–219

    Article  Google Scholar 

  • Jones DA, Parkin MC, Langemann H, Landolt H, Hopwood SE, Strong AJ, Boutelle MG (2002) On-line monitoring in neurointensive care—enzyme-based electrochemical assay for simultaneous, continuous monitoring of glucose and lactate from critical care patients. J Electroanal Chem 538:243–252

    Article  Google Scholar 

  • Jungheim K, Wientjes KJ, Heinemann L, Lodwig V, Koschinsky T, Schoonen AJ (2001) Subcutaneous continuous glucose monitoring: feasibility of a new microdialysis-based glucose sensor system. Diabetes Care 24:1696–1697

    Article  Google Scholar 

  • Kitano M, Sakamoto H, Das K, Komaki T, Kudo M (2010) EUS-guided in vivo microdialysis of the pancreas: a novel technique with potential diagnostic and therapeutic application. Gastrointest Endosc 71:176–179

    Article  Google Scholar 

  • Klaus S, Heringlake M, Bahlmann L (2004) Bench-to-bedside review: microdialysis in intensive care medicine. Crit Care 8:363–368

    Article  Google Scholar 

  • Kubiak T, Wörle B, Kuhr B, Nied I, Gläsner G, Hermanns N, Kulzer B, Haak T (2006) Microdialysis-based 48-hour continuous glucose monitoring with GlucoDay™: Clinical performance and patients’ acceptance. Diabetes Technol Ther 8:570–575

    Article  Google Scholar 

  • Lin Y, Zhu N, Yu P, Su L, Mao L (2009) Physiologically relevant online electrochemical method for continuous and simultaneous monitoring of striatum glucose and lactate following global cerebral ischemia/reperfusion. Anal Chem 81:2067–2074

    Article  Google Scholar 

  • Mader JK, Weinhandl H, Köhler G, Plank J, Bock G, Korsatko S, Ratzer M, Ikeoka D, Köhler H, Pieber TR, Ellmerer M (2010) Assessment of different techniques for subcutaneous glucose monitoring in type 1 diabetic patients during ‘real-life’ glucose excursions. Diabet Med 27:332–338

    Article  Google Scholar 

  • Maran A, Crepaldi C, Tiengo A, Grassi G, Vitali E, Pagano G, Bistoni S, Calabrese G, Santeusanio F, Leonetti F, Ribaudo M, Mario UDI, Annuzzi G, Genovese S, Riccardi G, Previti M, Cucinotta D, Giorgino F, Bellomo A, Giorgino R, Poscia A, Varalli M (2002) Continuous subcutaneous glucose monitoring in diabetic patients: a multicenter analysis. Diabetes Care 25:347–352

    Article  Google Scholar 

  • Matthiessen P, Hallbook O, Rutegard J, Simert G, Sjodahl R (2007a) Defunctioning stoma reduces symptomatic anastomotic leakage after low anterior resection of the rectum for cancer: a randomized multicenter trial. Ann Surg 246:207–214

    Article  Google Scholar 

  • Matthiessen P, Strand I, Jansson K, Törnquist C, Andersson M, Rutegård JR, Norgren L (2007b) Is early detection of anastomotic leakage possible by intraperitoneal microdialysis and intraperitoneal cytokines after anterior resection of the rectum for cancer? Dis Colon Rectum 50:1918–1927

    Google Scholar 

  • McAdoo DJ, Wu P (2008) Microdialysis in central nervous system disorders and their treatment. Pharmacol Biochem Behav 90:282–296

    Article  Google Scholar 

  • Moraska AF, Hickner RC, Kohrt WM, Brewer A (2013) Changes in blood flow and cellular metabolism at a myofascial trigger point with trigger point release (ischemic compression): a proof-of-principle pilot study. Arch Phys Med Rehabil 94:196–200

    Article  Google Scholar 

  • Morgan CJ, Friedmann PS, Church MK, Clough GF (2006) Cutaneous microdialysis as a novel means of continuously stimulating eccrine sweat glands in vivo. J Invest Dermatol 126:1220–1225

    Article  Google Scholar 

  • Mortensen SP, Thaning P, Nyberg M, Saltin B, Hellsten Y (2011) Local release of ATP into the arterial inflow and venous drainage of human skeletal muscle: insight from ATP determination with the intravascular microdialysis technique. J Physiol 589:1847–1857

    Article  Google Scholar 

  • Nielsen JK, Freckmann G, Kapitza C, Ocvirk G, Koelker KH, Kamecke U, Gillen R, Amann-Zalan I, Jendrike N, Christiansen JS, Koschinsky T, Heinemann L (2009) Glucose monitoring by microdialysis: performance in a multicentre study. Diabet Med 26:714–721

    Article  Google Scholar 

  • Nowak G, Ungerstedt J, Wernerman J, Ungerstedt U, Ericzon BG (2002a) Metabolic changes in the liver graft monitored continuously with microdialysis during liver transplantation in a pig model. Liver Transpl 8:424–432

    Article  Google Scholar 

  • Nowak G, Ungerstedt J, Wernerman J, Ungerstedt U, Ericzon BG (2002b) Clinical experience in continuous graft monitoring with microdialysis early after liver transplantation. Br J Surg 89:1169–1175

    Article  Google Scholar 

  • Nowak G, Ungerstedt J, Wernerson A, Ungerstedt U, Ericzon BG (2003) Hepatic cell membrane damage during cold preservation sensitizes liver grafts to rewarming injury. J Hepatobiliary Pancreat Surg 10:200–205

    Article  Google Scholar 

  • Ocvirk G, Hajnsek M, Gillen R, Guenther A, Hochmuth G, Kamecke U, Koelker KH, Kraemer P, Obermaier K, Reinheimer C, Jendrike N, Freckmann G (2009) TheClinical Research tool: a high-performance microdialysis-based system for reliably measuring interstitial fluid glucose concentration. J Diabetes Sci Technol 3:468–477

    Google Scholar 

  • Páez X, Hernández L (1997) Blood microdialysis in humans: a new method for monitoring plasma compounds. Life Sci 61:847–856

    Article  Google Scholar 

  • Parkin MC, Hopwood SE, Jones DA, Hashemi P, Landolt H, Fabricius M, Lauritzen M, Boutelle MG, Strong AJ (2005) Dynamic changes in brain glucose and lactate in pericontusional areas of the human cerebral cortex, monitored with rapid sampling on-line microdialysis: relationship with depolarisation-like events. J Cereb Blood Flow Metab 25:402–413

    Article  Google Scholar 

  • Pasic A, Koehler H, Schaupp L, Pieber TR, Klimant I (2006) Fiber-optic flow-through sensor for online monitoring of glucose. Anal Bioanal Chem 386:1293–1302

    Article  Google Scholar 

  • Pedersen ME, Dahl M, Qvist N (2011) Intraperitoneal microdialysis in the postoperative surveillance after surgery for necrotizing enterocolitis: a preliminary report. J Pediatr Surg 46:352–356

    Article  Google Scholar 

  • Poscia A, Mascini M, Moscone D, Luzzana M, Caramenti G, Cremonesi P, Valgimigli F, Bongiovanni C, Varalli M (2003) A microdialysis technique for continuous subcutaneous glucose monitoring in diabetic patients (part 1). Biosens Bioelectron 18:891–898

    Article  Google Scholar 

  • Poscia A, Messeri D, Moscone D, Ricci F, Valgimigli F (2005) A novel continuous subcutaneous lactate monitoring system. Biosens Bioelectron 20:2244–2250

    Article  Google Scholar 

  • Sansuk S, Bitziou E, Joseph MB, Covington JA, Boutelle MG, Unwin PR, Macpherson JV (2013) Ultrasensitive detection of dopamine using a carbon nanotube network microfluidic flow electrode. Anal Chem 85:163–169

    Article  Google Scholar 

  • Sarrafzadeh A, Santos E, Wiesenthal D, Martus P, Vajkoczy P, Oehmchen M, Unterberg A, Dreier JP, Sakowitz O (2013) Cerebral glucose and spreading depolarization in patients with aneurysmal subarachnoid hemorrhage. Acta Neurochir Suppl 115:143–147

    Google Scholar 

  • Simmel F, Kirbs C, Erdogan Z, Lackner E, Zeitlinger M, Kloft C (2013) Pilot investigation on long-term subcutaneous microdialysis: proof of principle in humans. AAPS Journal 15:95–103

    Article  Google Scholar 

  • Solligård E, Wahba A, Skogvoll E, Stenseth R, Grønbech JE, Aadahl P (2007) Rectal lactate leves in endoluminal microdialysate during routine coronary surgery. Anaesthesia 62:250–258

    Article  Google Scholar 

  • Solligård E, Juel IS, Spigset O, Romundstad P, Grønbech JE, Aadahl P (2008) Gut luminal lactate measured by microdialysis mirrors permeability of the intestinal mucosa after ischemia. Shock 29:245–251

    Google Scholar 

  • Sommer T, Larsen JF (2004) Intraperitoneal and intraluminal microdialysis in the detection of experimental regional intestinal ischaemia. Br J Surg 91:855–861

    Article  Google Scholar 

  • Sorensen H (2008) Free jejunal flaps can be monitored by use of microdialysis. J Reconstr Microsurg 24:443–448

    Article  Google Scholar 

  • Spinale FG, Koval CN, Deschamps AM, Stroud RE, Ikonomidis JS (2008) Dynamic changes in matrix metalloprotienase activity within the human myocardial interstitium during myocardial arrest and reperfusion. Circulation 118:S16–S23

    Article  Google Scholar 

  • Sung J, Barone PW, Kong H, Strano MS (2009) Sequential delivery of dexamethasone and VEGF to control local tissue response for carbon nanotube fluorescence based micro-capillary implantable sensors. Biomaterials 30:622–631

    Article  Google Scholar 

  • Tenhunen JJ, Jakob SM, Takala JA (2001) Gut luminal lactate release during gradual intestinal ischemia. Intensive Care Med 27:1916–1922

    Article  Google Scholar 

  • Valgimigli F, Lucarelli F, Scuffi C, Morandi S, Sposato I (2010) Evaluating the clinical accuracy of GlucoMen®Day: a novel microdialysis-based continuous glucose monitor. J Diabetes Sci Technol 4:1182–1192

    Google Scholar 

  • van der Zeyden M, Oldenziel WH, Rea K, Cremers TI, Westerink BH (2008) Microdialysis of GABA and glutamate: analysis, interpretation and comparison with microsensors. Pharmacol Biochem Behav 90:135–147

    Article  Google Scholar 

  • Varalli M, Marelli G, Maran A, Bistoni S, Luzzana M, Cremonesi P, Caramenti G, Valgimigli F, Poscia A (2003) A microdialysis technique for continuous subcutaneous glucose monitoring in diabetic patients (part 2). Biosens Bioelectron 18:899–905

    Article  Google Scholar 

  • Wælgaard L, Thorgersen EB, Line PD, Foss A, Mollnes TE, Tønnessen TI (2008) Microdialysis monitoring of liver grafts by metabolic parameters, cytokine production, and complement activation. Transplantation 86:1096–1103

    Article  Google Scholar 

  • Waldenström A, Ronquist G, Åberg AM, Ahlström K, Hauck P, Abrahamsson P, Johansson G, Biber B, Haney MF (2012) Ischaemic preconditioning reduces myocardial calcium overload in coronary-occluded pig hearts shown by continuous in vivo assessment using microdialysis. Clin Physiol Funct Imaging 32:133–138

    Article  Google Scholar 

  • Yu Y, Liu X, Jiang D, Sun Q, Zhou T, Zhu M, Jin L, Shi G (2011a) [C3(OH)2mim][BF4]-Au/Pt biosensor for glutamate sensing in vivo integrated with on-line microdialysis system. Biosens Bioelectron 26:3227–3232

    Article  Google Scholar 

  • Yu Y, Sun Q, Zhou T, Zhu M, Jin L, Shi G (2011b) On-line microdialysis system with poly(amidoamine)-encapsulated Pt nanoparticles biosensor for glutamate sensing in vivo. Bioelectrochemistry 81:53–57

    Article  Google Scholar 

  • Yu Y, Yang Y, Gu H, Zhou T, Shi G (2013) Size-tunable Pt nanoparticles assembled on functionalized ordered mesoporous carbon for the simultaneous and on-line detection of glucose and L-lactate in brain microdialysate. Biosens Bioelectron 41:511–518

    Article  Google Scholar 

  • Zhang M, Mao L (2005) Enzyme-based amperometric biosensors for continuous and on-line monitoring of cerebral extracellular microdialysate. Front Biosci 10:345–352

    Article  Google Scholar 

  • Zhang Z, Lin Y, Mao L (2009) On-line electrochemical measurements of cerebral hypoxanthine of freely moving rats. Sci China, Ser B: Chem 52:1677–1682

    Article  Google Scholar 

  • Zhu W, An Y, Zheng J, Tang L, Zhang W, Jin L, Jiang L (2009) A new microdialysis-electrochemical device for in vivo simultaneous determination of acetylcholine and choline in rat brain treated with N-methyl-(R)-salsolinol. Biosens Bioelectron 24:3594–3599

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma P. Córcoles .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Córcoles, E.P., Boutelle, M.G. (2013). Microdialysis Monitoring. In: Biosensors and Invasive Monitoring in Clinical Applications. SpringerBriefs in Applied Sciences and Technology. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00360-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00360-3_10

  • Published:

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00359-7

  • Online ISBN: 978-3-319-00360-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics