Skip to main content

The Quantum Potential in Gravity and Cosmology

  • Chapter
  • First Online:
Quantum Potential: Physics, Geometry and Algebra

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

  • 1340 Accesses

Abstract

The fundamental role of Bohm’s quantum potential in the treatment of gravity and thus in the general-relativistic domain has been explored by various authors (see, for example, the book of R. Carroll Fluctuations, information, gravity and the quantum potential [1]). Here we focus our attention on a very interesting recent research of A. Shojai and F. Shojai. These two authors examined the behaviour of particles at spin 0 in a curved space-time, demonstrating that quantum potential contributes to the curvature that is added to the classic one and reveals deep and unexpected connections between gravity and the quantum phenomena (Ref. [2, 3] in Chap. 2). To develop the discussion about this topic we refer to the articles [214].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carroll, R.W.: Fluctuations, Information, Gravity and the Quantum Potential. Springer, Dordrecht (2006)

    MATH  Google Scholar 

  2. Shojai, A.: Quantum, gravity and geometry. Int. J. Mod. Phys. A 15, 1757 (2000)

    MathSciNet  ADS  MATH  Google Scholar 

  3. Shojai, F., Shojai, A.: Pure quantum solutions of Bohmian quantum gravity. Jour. High Energy Physics 05, 037 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  4. Shojai, F., Shojai, A.: Quantum Einstein’s equations and constraints algebra. Pramana 58(1), 13–19 (2002)

    Article  ADS  Google Scholar 

  5. Shojai, F., Shojai, A.: On the relation of Weyl geometry and and Bohmian quantum gravity. Gravitation Cosmol. 9(3), 163–168 (2003)

    MathSciNet  ADS  MATH  Google Scholar 

  6. Shojai, F., Shojai, A.: Constraints Algebra and equations of motion in Bohmian interpretation of quantum gravity. Classical Quant. Grav. 21, 1–9 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Shojai, F., Shojai, A.: Non-minimal scalar-tensor theories and quantum gravity. Inter. Jour. Mod. Phys. A15(13), 1859–1868 (2000)

    MathSciNet  ADS  Google Scholar 

  8. Shojai, A., Golshani, M.: Direct particle interaction as the origin of the quantal behaviours. arXiv:quant-ph/9812019 (1996)

    Google Scholar 

  9. Shojai, A., Golshani, M.: On the relativistic quantum force. arXiv:quant-ph/9612023 (1996)

    Google Scholar 

  10. Shojai, A., Golshani, M.: Some observable results of the retarded’s Bohm’s theory. arXiv:quant-ph/9612020 (1996)

    Google Scholar 

  11. Shojai, A., Golshani, M.: Is superluminal motion in relativistic Bohm’s theory observable? arXiv:quant-ph/9612021 (1996)

    Google Scholar 

  12. Shojai, F., Shojai, A.: Constraint algebra and the equations of motion in the Bohmian interpretation of quantum gravity. Class. Quant. Grav. 21, 1–9 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Shojai, F., Shojai, A.: Causal loop quantum gravity and cosmological solutions. Europhys. Lett. 71(6), 886–892 (2005)

    Article  ADS  Google Scholar 

  14. Shojai. F., Shojai, A. (2005). Constraint algebra in causal loop quantum gravity. In : Rahvar, S., Sadooghi, N., Shojai F (ed.) Proceedings of the XI Regional Conference, pp. 114–116. Tehran, Iran. World Scientific, 3–6 May 2004

    Google Scholar 

  15. de-Broglie, L.: Non-linear Wave Mechanics (translated by A.J. Knodel). Elsevier Publishing Company, Amsterdam (1960)

    Google Scholar 

  16. Horiguchi, T.: Quantum potential interpretation of the Wheeler-deWitt equation. Mod. Phys. Lett. A 9(16), 1429–1443 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Blaut, A., Glikman, J.K.: Quantum potential approach to class of quantum cosmological models. Class. Quant. Grav. 13, 39–50 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Kim, S.P.: Quantum potential and cosmological singularities. Phys. Lett. A 236(1/2), 11–15 (1997)

    Article  ADS  Google Scholar 

  19. Kim, S.P.: Problem of unitarity and quantum corrections in semi-classical quantum gravity. Phys. Rev. D 55(12), 7511–7517 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  20. Cushing, J.T.: The causal quantum theory program. In: Cushing, J.T., Fine, A., Goldstein, S. (eds.) Bohmiam Mechanics and Quantum Theory: An Appraisal. Kluwer Academic Publishers, Boston (1996)

    Chapter  Google Scholar 

  21. Shojai, F., Shojai, A., Golshani, M.: Conformal transformations and quantum gravity. Mod. Phys. Lett. A 13(34), 2725–2729 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  22. Shojai, F., Shojai, A., Golshani, M.: Scalar-tensor theories and quantum gravity. Mod. Phys. Lett. A 13(36), 2915–2922 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  23. Shojai, A., Shojai, F., Golshani, M.: Nonlocal effects in quantum gravity. Mod. Phys. Lett. A 13(37), 2965–2969 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  24. Shojai, F., Shojai, A.: On the relation of Weyl geometry and Bohmian quantum mechanics. Gravitation Cosmol. 9, 163–168 (2003)

    MathSciNet  ADS  MATH  Google Scholar 

  25. Cho, Y.M., Park, D.H.: Higher-dimensional unification and fifth force. Il Nuovo Cimento B 105(8/9), 817–829 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  26. de Barros, J.A., Pinto-Neto, N., Sagioro-Leal, M.A.: The causal interpretation of dust and radiation fluid non-singular quantum cosmologies. Phys. Lett. A 241(4), 229–239 (1998)

    Article  ADS  Google Scholar 

  27. Shojai, F., Golshani, M.: On the geometrization of Bohmian mechanics: a new suggested approach to quantum gravity. Int. J. Mod. Phys. A 13(4), 677–693 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Colistete, J.R., Fabris, J.C., Pinto–Neto, N.: Singularities and classical limit in quantum cosmology with scalar fields. Phys. Rev. D 57(8), 4707–4717 (1998)

    Google Scholar 

  29. Pinto-Neto, N., Colistete, R.: Graceful exit from inflation using quantum cosmology. Phys. Lett. A 290(5/6), 219–226 (2001)

    Article  ADS  MATH  Google Scholar 

  30. Kenmoku, M., Sato, R., Uchida, S.: Classical and quantum solutions of (2 + 1)-dimensional gravity under the de Broglie-Bohm interpretation. Class. Quantum Grav. 19(4), 799 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Pinto-Neto, N.: Quantum cosmology: how to interpret and obtain results. Braz. J. Phys. 30(2), 330–345 (2000)

    Article  ADS  Google Scholar 

  32. Ashtekar, A., Lewandowski, J.: Quantum field theory of geometry. arXiv:hep-th/9603083 (1996)

    Google Scholar 

  33. Ashtekar, A., Corichi, A., Zapata, J.: Quantum theory of geometry III: non-commutativity of Riemannian structures. Class. Quant. Grav. 15, 2955–2972 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Ashtekar, A., Lewandowski, J.: Background independent quantum gravity: a status report. Class. Quant. Grav. 21, 53–152 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  35. Ashtekar, A., Isham, C.: Representations of holonomy algebras of gravity and non-abelian gauge theories. Class. Quantum Grav. 9, 1433–1467 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Ashtekar, A.: Gravity and the quantum. New J. Phys. 7, 198 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  37. Baez, J. (ed.): Knots and Quantum Gravity. Oxford University Press, Oxford (1994)

    MATH  Google Scholar 

  38. Biswas, S., Shaw, A., Biswas, D.: Schrödinger Wheeler-DeWitt equation in multidimensional cosmology. Int. J. Mod. Phys. D 10, 585–594 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Dittrich, B., Thiemann, T.: Testing the master constraint programme for loop quantum gravity I. General framework. Class. Quant. Grav. 23, 1025–1046 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Dittrich, B., Thiemann, T.: Testing the master constraint programme for loop quantum gravity II. Finite dimensional systems. Class. Quant. Grav. 23, 1067–1088 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Dittrich, B., Thiemann, T.: Testing the master constraint programme for loop quantum gravity III. SL(2R) models. Class. Quant. Grav. 23, 1089–1120 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. Dittrich, B., Thiemann, T.: Testing the master constraint programme for loop quantum gravity IV. Free field theories. Class. Quant. Grav. 23, 1121–1142 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Dittrich, B., Thiemann, T.: Testing the master constraint programme for loop quantum gravity V. Interaction field theories. Class. Quant. Grav. 23, 1143–1162 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Gambini, R., Pullin, J.: Loops, Knots, Gauge Theories and Quantum Gravity. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  45. Horiguchi, T., Maeda, K., Sakamoto, M.: Analysis of the Wheeler-DeWitt equation beyond Planck scale and dimensional reduction. Phys. Lett. B344, 105–109 (1995)

    Article  ADS  Google Scholar 

  46. Kenmoku, M., Kubortani, H., Takasugi, E., Yamazaki, Y.: De Broglie-Bohm interpretation for analytic solutions of the Wheeler-DeWitt equation in spherically symmetric space-time. Progress Theoret. Phys. 105(6), 897–914 (2001)

    Article  ADS  MATH  Google Scholar 

  47. Kiefer, C.: Quantum Gravity. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  48. Gambini, R., Pullin, J.: A First Course in Loop Quantum Gravity. Oxford University Press, Oxford (2011)

    Google Scholar 

  49. Markopoulou, F., Smolin, L.: Quantum theory from quantum gravity. Phys. Rev. D70, 124029 (2004)

    MathSciNet  ADS  Google Scholar 

  50. Moss, I.: Quantum Theory, Black Holes, and Inflation. Wiley, New York (1996)

    MATH  Google Scholar 

  51. Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  52. Rovelli, C.: Covariant hamiltonian formalism for field theory: Hamilton-Jacobi equation on the space G. arXiv:gr-qc/0207043 (2002)

    Google Scholar 

  53. Smolin, L.: Three Roads to Quantum Gravity. Oxford University Press, Oxford (2002)

    Google Scholar 

  54. Smolin, L.: An invitation to loop quantum gravity. arXiv:hep-th/0408048 (2004)

    Google Scholar 

  55. Smolin, L.: Matrix models as non-local hidden variables theories. arXiv:hep-th/0201031 (2002)

    Google Scholar 

  56. Thiemann, T.: Modern Canonical Quantum General Relativity. Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge (2008)

    Google Scholar 

  57. Thiemann, T.: Lectures on loop quantum gravity. Lect. Notes Phys. 631, 41–135 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  58. Thiemann, T.: Anomaly-free formulation of non-perturbative, four-dimensional. Lorentzian quantum gravity. Phys. Lett. B 380, 257–264 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  59. Thiemann, T.: Quantum spin dynamics. Class. Quant. Grav. 15, 839–873 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  60. Thiemann, T.: Quantum spin dynamics (qsd). 2. Class. Quant. Grav. 15, 875–905 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  61. Thiemann, T.: QSD IV: 2 + 1 Euclidean quantum gravity as a model to test. 3 + 1 Lorentzian quantum gravity. Class. Quant. Grav. 15, 1249–1280 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  62. Thiemann, T.: QSD 5: Quantum gravity as the natural regulator of matter quantum field teories. Class. Quant. Grav. 15, 1281–1314 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  63. Shojai, A., Shojai, F.: About some problems raised by the relativistic form of de Broglie-Bohm theory of pilot wave. Phys. Scr. 64, 413 (2001)

    Article  ADS  MATH  Google Scholar 

  64. Shojai, A., Shojai, F., Naresh, D.: Static Einstein’s universe as a quantum solution of causal quantum gravity. Int. Jour. of Mod. Phys. A 20(13), 2773–2780 (2005)

    Article  ADS  MATH  Google Scholar 

  65. Vink, J.: Quantum mechanics in terms of discrete beables. Phys. Rev. A 48(3), 1808–1818 (1993)

    Article  ADS  Google Scholar 

  66. Vink, J.: Quantum potential interpretation of the wave function of the universe. Nucl. Phys. B 369(3), 707–728 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  67. de Barros, J.A., Pinto-Neto, N.: The causal interpretation of quantum mechanics and the singularity problem and time issue in quantum cosmology. Int. J. of Mod. Phys. D 7, 201 (1998)

    Article  ADS  MATH  Google Scholar 

  68. Kowalski-Glikman, J., Vink, J.C.: Gravity-matter mini-superspace: quantum regime, classical regime and in between. Class. Quantum Grav. 7, 901–918 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  69. Squires, E.J.: A quantum solution to a cosmological Mystery. Phys. Lett. A 162, 35 (1992)

    Google Scholar 

  70. Pinto-Neto, N.: The Bohm interpretation of quantum cosmology. Found. Phys. 35(4), 577–603 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  71. Pinto-Neto, N.: Evolution of perturbations in bouncing cosmological models. AIP Conf. Proc. 782, 277–288 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  72. Pinto-Neto, N., Santini, S.E.: The consistency of causal quantum geometrodynamics and quantum field theory. Gen. Rel. Grav. 34(4), 505–532 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  73. Pinto-Neto, N., Santini, S.E.: The accelerated expansion of the universe as a quantum cosmological effect. Phys. Lett. A 315(1/2), 36–50 (2003)

    Article  ADS  MATH  Google Scholar 

  74. Pinto-Neto, N., Fabris, J.C.: Quantum cosmology from the de Broglie-Bohm perspective. arXiv:1306.0820v1 [gr-qc] (2013)

    Google Scholar 

  75. Pinto-Neto, N., Santini, S.E.: Must quantum spacetimes be Euclidean? Phys. Rev. D 59(12), 123517 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  76. Dautcourt, G.: On the ultrarelativistic limit of general relativity. Acta Phys. Pol., B 29(4), 1047–1055 (1998)

    MathSciNet  ADS  MATH  Google Scholar 

  77. Barbosa, G., Pinto-Neto, N.: Noncommutative quantum mechanics and Bohm’s ontological interpretation. Physical Review D 69(6), 065014 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  78. Barbosa, G., Pinto-Neto, N.: Noncommutative geometry and cosmology. Phys. Rev. D 70, 103512 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  79. Barbosa, G.: Noncommutative conformally coupled scalar field cosmology and its commutative counterpart. Phys. Rev. D 71(6), 063511 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  80. Barbosa, G.: On the meaning of the string-inspired noncommutativity and its implications. Jour. High Energy Phys. 5, 24 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  81. Chapline, G.: Geometrization of gauge fields. Quantum Theory and Gravitation, pp. 177–186. Academic Press, A.R. Marlow (1980)

    Google Scholar 

  82. Licata, I., Chiatti, L.: The archaic universe: big-bang, cosmological term and the quantum origin of time in projective relativity. Int. Jour. Theor. Phys. 48, 1003–1018 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  83. Licata, I., Chiatti, L.: Archaic universe and cosmological model: “big-bang” as nucleation by vacuum. Int. J. Theor. Phys. 49, 2379–2402 (2010)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignazio Licata .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Licata, I., Fiscaletti, D. (2014). The Quantum Potential in Gravity and Cosmology. In: Quantum Potential: Physics, Geometry and Algebra. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-00333-7_3

Download citation

Publish with us

Policies and ethics