Skip to main content

Path Properties and Regularity of Affine Processes on General State Spaces

  • Chapter
  • First Online:
Book cover Séminaire de Probabilités XLV

Part of the book series: Lecture Notes in Mathematics ((SEMPROBAB,volume 2078))

Abstract

We provide a new proof for regularity of affine processes on general state spaces by methods from the theory of Markovian semimartingales. On the way to this result we also show that the definition of an affine process, namely as stochastically continuous time-homogeneous Markov process with exponential affine Fourier–Laplace transform, already implies the existence of a càdlàg version. This was one of the last open issues in the fundaments of affine processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, K  ∗  denotes the dual cone.

  2. 2.

    In Definition 2.1 affine processes on the canonical state space \(D = \mathbb{R}_{+}^{m} \times {\mathbb{R}}^{n-m}\) are considered, whereas in Definition 12.1 the state space D can be an arbitrary subset of \({\mathbb{R}}^{n}\).

  3. 3.

    Due to relation (9) and the continuity of (t, u)↦h(x; t, u), this is also implied by the weaker condition (7).

  4. 4.

    As mentioned at the beginning of Sect.  2 , ∞ corresponds to a “point at infinity” and D Δ ∪{∞} is the one-point compactification of D Δ . If the state space D is compact, we do not adjoin {∞} and only consider a sequence with values in D Δ.

  5. 5.

    Note that these subsequences depend on u. For notational convenience we however suppress the dependence on u.

  6. 6.

    Note that due to the measurable projection theorem, \(\widetilde{\Omega } \in {\mathcal{F}}^{x}\).

  7. 7.

    In the case of affine processes, this would be implied by the differentiability of Φ and ψ with respect to t, which we only prove in Sect. 6 using the results of this paragraph.

  8. 8.

    Here, \(\mathcal{O}(\mathcal{F}_{t})\) denotes the \((\mathcal{F}_{t})\)-optional σ-algebra.

References

  1. H. Bauer, Probability Theory, vol. 23 of de Gruyter Studies in Mathematics (Walter de Gruyter, Berlin, 1996). Translated from the fourth (1991) German edition by Robert B. Burckel and revised by the author

    Google Scholar 

  2. R.M. Blumenthal, R.K. Getoor, Markov Processes and Potential Theory. Pure and Applied Mathematics, vol. 29 (Academic Press, New York, 1968)

    Google Scholar 

  3. M.-F. Bru, Wishart processes. J. Theoret. Probab. 4(4), 725–751 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. B. Buraschi, A. Cieslak, F. Trojani, Correlation risk and the term structure of interest rates. Working paper, University St.Gallen, 2007

    Google Scholar 

  5. E. Çinlar, J. Jacod, P. Protter, M.J. Sharpe. Semimartingales and Markov processes. Z. Wahrsch. Verw. Gebiete 54(2), 161–219 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  6. P. Cheridito, D. Filipović, M. Yor, Equivalent and absolutely continuous measure changes for jump-diffusion processes. Ann. Appl. Probab. 15(3), 1713–1732 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. K.L. Chung, J.B. Walsh, Markov processes, Brownian motion, and time symmetry, vol. 249 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 2nd edn. (Springer, New York, 2005)

    Google Scholar 

  8. J.C. Cox, J.E.J. Ingersoll, S.A. Ross, A theory of the term structure of interest rates. Econometrica 53(2), 385–407 (1985)

    Article  MathSciNet  Google Scholar 

  9. C. Cuchiero, D. Filipović, E. Mayerhofer, J. Teichmann, Affine processes on positive semidefinite matrices. Ann. Appl. Probab. 21(2), 397–463 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Da Fonseca, M. Grasselli, C. Tebaldi, A multifactor volatility Heston model. Quant. Finance 8(6), 591–604 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Q. Dai, K.J. Singleton, Specification analysis of affine term structure models. J. Finance 55(5), 1943–1978 (2000)

    Article  Google Scholar 

  12. D. Duffie, D. Filipović, W. Schachermayer, Affine processes and applications in finance. Ann. Appl. Probab. 13(3), 984–1053 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Duffie, R. Kan, A yield-factor model of interest rates. Math. Finance 6(4), 379–406 (1996)

    Article  MATH  Google Scholar 

  14. D. Duffie, J. Pan, K. Singleton, Transform analysis and asset pricing for affine jump-diffusions. Econometrica 68(6), 1343–1376 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. S.N. Ethier, T.G. Kurtz, Markov Processes. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics (Wiley, New York, 1986)

    Book  MATH  Google Scholar 

  16. I.I. Gihman, A.V. Skorohod, The Theory of Stochastic Processes II. Grundlehren der Mathematischen Wissenschaften, Bd. 218 (Springer, Berlin, 1983)

    Google Scholar 

  17. C. Gourieroux, R. Sufana, Wishart quadratic term structure models. SSRN eLibrary, 2003

    Google Scholar 

  18. S.L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 6(2), 327–343 (1993)

    Article  Google Scholar 

  19. R. Howard, The inverse function theorem for Lipschitz maps. Lecture Notes, 1997

    Google Scholar 

  20. J. Jacod, A.N. Shiryaev, Limit Theorems for Stochastic Processes, vol. 288 of Fundamental Principles of Mathematical Sciences, 2nd edn. (Springer, Berlin, 2003)

    Google Scholar 

  21. K. Kawazu, S. Watanabe, Branching processes with immigration and related limit theorems. Teor. Verojatnost. i Primenen. 16, 34–51 (1971)

    MathSciNet  MATH  Google Scholar 

  22. M. Keller-Ressel, W. Schachermayer, J. Teichmann, Affine processes are regular. Probab. Theory Relat. Fields 151(3–4), 591–611 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Keller-Ressel, W. Schachermayer, J. Teichmann, Regularity of affine processes on general state spaces. arXiv preprint arXiv:1105.0632 (2011)

    Google Scholar 

  24. D. Lando, On Cox processes and credit risky securities. Rev. Derivatives Res. 2(2–3), 99–120 (1998)

    Google Scholar 

  25. S. Lang, Real and Functional Analysis, vol. 142 of Graduate Texts in Mathematics, 3rd edn. (Springer, New York, 1993)

    Google Scholar 

  26. M. Leippold, F. Trojani, Asset pricing with matrix jump diffusions. SSRN eLibrary, 2008

    Google Scholar 

  27. G. Letac, H. Massam, The noncentral Wishart as an exponential family, and its moments. J. Multivariate Anal. 99(7), 1393–1417 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. P.E. Protter, Stochastic Integration and Differential Equations, vol. 21 of Stochastic Modelling and Applied Probability, 2nd edn. Version 2.1, Corrected third printing. (Springer, Berlin, 2005)

    Google Scholar 

  29. D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, vol. 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 3rd edn. (Springer, Berlin, 1999)

    Google Scholar 

  30. L.C.G. Rogers, D. Williams, Diffusions, Markov Processes, and Martingales. Vol. 1: Foundations. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, 2nd edn. (Wiley, Chichester, 1994)

    Google Scholar 

  31. E. Veerman, Affine Markov processes on a general state space. PhD thesis, University of Amsterdam, 2011

    Google Scholar 

Download references

Acknowledgements

We thank Georg Grafendorfer and Enno Veerman for discussions and helpful comments. Both authors gratefully acknowledge the financial support by the ETH Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Teichmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cuchiero, C., Teichmann, J. (2013). Path Properties and Regularity of Affine Processes on General State Spaces. In: Donati-Martin, C., Lejay, A., Rouault, A. (eds) Séminaire de Probabilités XLV. Lecture Notes in Mathematics(), vol 2078. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00321-4_8

Download citation

Publish with us

Policies and ethics