Advertisement

Simulations of Flow Pattern with Cellular Automaton

  • Jacek TejchmanEmail author
Part of the Springer Series in Geomechanics and Geoengineering book series (SSGG)

Abstract

A cellular automaton is described. Two different types are used: a simplified and an advanced one. The detailed simulation results of flow patterns in silos are presented.

Keywords

Mass Flow Flow Pattern Granular Material Cellular Automaton Granular Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alonso, J.J., Herrmann, H.J.: Shape of the tail of a two-dimensional sand pile. Physical Review Letters 76(26), 4911–4914 (1996)CrossRefGoogle Scholar
  2. 2.
    Baxter, G.W., Behringer, R.P., Fagert, T., Johnson, G.A.: Pattern formation and time-dependence in flowing sand. In: Joseph, D.D., Schaeffer, D.G. (eds.) Two Phase Flows and Waves, pp. 1–29. Springer, New York (1990)CrossRefGoogle Scholar
  3. 3.
    Baxter, G.W., Behringer, R.P.: Cellular automata models for the flow of granular materials. Physica D 51, 465–471 (1991)zbMATHCrossRefGoogle Scholar
  4. 4.
    Bransby, P.L., Blair-Fish, P.M., James, R.G.: An investigation of the flow of granular materials. Powder Technology 8, 197–206 (1973)CrossRefGoogle Scholar
  5. 5.
    Caram, H., Hong, D.C.: Random-walk approach to granular flows. Phys. Rev. Lett. 67, 828–831 (1991)CrossRefGoogle Scholar
  6. 6.
    Chopard, B., Droz, M.: Cellular automata modeling of physical systems. Cambridge University Press (1998)Google Scholar
  7. 7.
    Cutress, J., Pulfer, R.F.: X-ray investigations of flowing powders. Powder Technology, 212–220 (1967)Google Scholar
  8. 8.
    Deserable, D., Martinez, J.: Using a cellular automaton for the simulation of flow of granular materials. In: Thornton, Balkema (eds.) Powder and Grains, pp. 345–350 (1993)Google Scholar
  9. 9.
    Deserable, D., Masson, S., Martinez, J.: Influence of exclusion rules on flow pattern in a lattice-grain model. In: Kishino (ed.) Powders and Grains, pp. 421–424. Swets and Zeitlinger, Lisse (2001)Google Scholar
  10. 10.
    Drescher, A., Cousens, T.W., Bransby, P.L.: Kinematics of the mass flow of granular material through a plane hopper. Geotechnique 28(1), 27–42 (1978)CrossRefGoogle Scholar
  11. 11.
    Eiksa, O.E., Mosby, J., Enstad, E.: Experimental investigations on the use of Binserts in order to obtain mass flow in silos. In: Proc. Intern. Conference on Silos, PARTEC 1995, Nürnberg, pp. 417–426 (1995)Google Scholar
  12. 12.
    Fiske, T.J., Railkar, S.B., Kalyon, D.M.: Effects of segregation on the packing of spherical and non-spherical particles. Powder Technology 81, 57–64 (1994)CrossRefGoogle Scholar
  13. 13.
    Frisch, U., Hasslacher, B., Pomeau, Y.: Lattice-gas automata for the Navier-Stokes equation. Phys. Rev. Lett. 56, 1505–1508 (1986)CrossRefGoogle Scholar
  14. 14.
    Gongwen, P., Herrmann, H.J.: Density waves of granular flow in a pipe using lattice-gas automata. Phys. Rev. E 49(3) (1994)Google Scholar
  15. 15.
    Goles, E., Gonzales, G., Herrmann, H.J., Martinez, S.: Simple lattice model with inertia for sand piles. Granular Matter 1, 137–140 (1998)CrossRefGoogle Scholar
  16. 16.
    Hampe, E.: Silos. VEB Verlag für Bauwesen, Berlin (1987)Google Scholar
  17. 17.
    Hemmingson, J., Herrmann, H.J., Roux, S.: Vectorial cellular automaton for the stress in granular media. J. Physique 1(7), 291–302 (1997)Google Scholar
  18. 18.
    Jasti, V.K., Higgs III, C.F.: A fast first order model of a rough annular shear cell using cellular automata. Granular Matter 12(1), 97–106 (2010)CrossRefGoogle Scholar
  19. 19.
    Johanson, J.R.: Controlling flow patterns by bins by use of an insert. Bulk Solid Handling 2(3) (1982)Google Scholar
  20. 20.
    Kaminski, M., Zubrzycki, M.: Reduzieren des dynamischen Horizontaldruckes in Getreidesilos. Bauingenieur, 313–318 (1985)Google Scholar
  21. 21.
    Kaminski, M., Antonowicz, R.: The flow of rape seed in silo equipped with a discharge device. Task Quarterly 7(4), 561–569 (2003)Google Scholar
  22. 22.
    Karolyi, A., Kertesz, J.: Lattice-Gas Model of Avalanches in a Granular Pile. Physical Review E (Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics) 57(1), 852–856 (1998)Google Scholar
  23. 23.
    Katsura, N., Shimosaka, A., Shirakawa, Y., Hidaka, H.: Simulation for flow behaviour of vibrating granular materials using cellular automata. In: Kishino (ed.) Powders and Grains, pp. 525–528. Swets and Zeitlinger, Lisse (2001)Google Scholar
  24. 24.
    Kozicki, J., Tejchman, J.: Simulations of granular flow in silos with a cellular automata model. The International Journal of Storing, Handling and Processing Powder 13(3), 267–275 (2001)Google Scholar
  25. 25.
    Kozicki, J., Tejchman, J.: Simulations of flow patterns in silos with a cellular automaton model – part 1. Task Quarterly 9(1), 81–102 (2005a)Google Scholar
  26. 26.
    Kozicki, J., Tejchman, J.: Simulations of flow patterns in silos with a cellular automaton model – part 2. Task Quarterly 9(1), 103–114 (2005b)Google Scholar
  27. 27.
    Kozicki, J., Tejchman, J.: Application of a cellular automaton to simulations of granular flow in silos. Granular Matter 7(1), 45–54 (2005c)zbMATHCrossRefGoogle Scholar
  28. 28.
    Litwiniszyn, J.: Application of the equation of stochastic processes to mechanics of loose bodies. Archives of Applied Mechanics 8(4), 393–411 (1956)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Martinez, J., Masson, S., Deserable, D.: Flow patterns and velocity profiles during silo discharge simulation with a lattice grain model. In: Proc. Intern. Conference on Silos, PARTEC 1995, Nürnberg, pp. 367–379 (1995)Google Scholar
  30. 30.
    Michalowski, R.L.: Flow of granular material through a plane hopper. Powder Technology 39, 29–40 (1984)CrossRefGoogle Scholar
  31. 31.
    Michalowski, R.L.: Strain localization and periodic fluctuations in granular flow processes from hoppers. Geotechnique 40(3), 389–403 (1990)CrossRefGoogle Scholar
  32. 32.
    Murakami, A., Sakaguchi, H., Takasuka, H.T., Fuji, H.: Study of microtopology and its evolution in granular materials using a cellular automata model. In: Kishino (ed.) Powders and Grains, pp. 33–36. Swets and Zeitlinger, Lisse (2001)Google Scholar
  33. 33.
    Osinov, V.A.: A model of a discrete stochastic medium for the problems of loose material flow. Continuum Mechanics and Thermodynamics 6, 51–60 (1994)CrossRefGoogle Scholar
  34. 34.
    Peng, G., Herrmann, H.J.: Density waves of granular flow in a pipe using lattice gas automata. Phys. Rev. 49(3), 1796–1799 (1994)CrossRefGoogle Scholar
  35. 35.
    Pieper, K., Wagner, K.: Der Einfluβ verschiedener Auslaufarten auf die Seitedrücke in Silozellen. Aufbereitungstechnik 10, 542–546 (1968)Google Scholar
  36. 36.
    Reimbert, M., Reimbert, A.: Silos – Theory and Practice. Trans Tech Publishing, Clausthal (1976)Google Scholar
  37. 37.
    Safarian, S.S., Harris, E.C.: Design Construction of Silos and Bunkers. Von Nostrand Reinhold Company (1985)Google Scholar
  38. 38.
    Sakaguchi, H., Murakami, A., Hasegawa, T., Shirai, A.: Connected lattice cellular-automaton particles: model for pattern formation in vibrating granular media. Soils and Foundations 36(1), 105–110 (1996)CrossRefGoogle Scholar
  39. 39.
    Savage, S.B.: Some aspects of confined granular flows. In: Proc. Int. Con. on Silos: Silos – Forschung and Praxis, pp. 111–121. University of Karlsruhe (1992)Google Scholar
  40. 40.
    Savage, S.B.: Disorder, diffusion and structure formation in granular flows. In: Bideau, D., Hansen, A. (eds.) Disorder and Granular Media, pp. 255–185. North-Holland (1993)Google Scholar
  41. 41.
    Schwedes, J.: Lagern und Flieβen von Schüttgütern, Hochschulkurs. Script, University of Braunschweig (1999)Google Scholar
  42. 42.
    Strusch, J., Schwedes, J., Hardow, B.: Inserts loads and wall stress distributions in silos with inserts. In: Proc. Inter. Conference on Silos, PARTEC 1995, Nürnberg, pp. 163–182 (1995)Google Scholar
  43. 43.
    Tejchman, J.: Shear localization and autogeneous dynamic effects in granular bodies. Publication Series of the Institute for Rock and Soil Mechanics, vol. 140, pp. 1–353. Karlsruhe University (1997)Google Scholar
  44. 44.
    Tejchman, J., Klisinski, M.: FE-studies on rapid flow of bulk solids in silos. Granular Matter 3(4), 215–231 (2001)CrossRefGoogle Scholar
  45. 45.
    Tejchman, J.: FE modeling of shear localization in granular bodies with micro-polar hypoplasticity. In: Wu, W., Borja, R.I. (eds.) Springer Series in Geomechanics and Geoengineering. Springer, Heidelberg (2008)Google Scholar
  46. 46.
    Ulm, S.: Random processes and transformations. In: Proc. Int. Con. Math., vol. 2, pp. 264–275 (1952)Google Scholar
  47. 47.
    Zhou, J.G.: Lattice Boltzman Methods. Springer (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Faculty of Civil and Environmental EngineeringGdansk University of TechnologyGdansk-WrzeszczPoland

Personalised recommendations