Skip to main content

Simulations of Flow Pattern with Cellular Automaton

  • Chapter

Part of the book series: Springer Series in Geomechanics and Geoengineering ((SSGG))

Abstract

A cellular automaton is described. Two different types are used: a simplified and an advanced one. The detailed simulation results of flow patterns in silos are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alonso, J.J., Herrmann, H.J.: Shape of the tail of a two-dimensional sand pile. Physical Review Letters 76(26), 4911–4914 (1996)

    Article  Google Scholar 

  2. Baxter, G.W., Behringer, R.P., Fagert, T., Johnson, G.A.: Pattern formation and time-dependence in flowing sand. In: Joseph, D.D., Schaeffer, D.G. (eds.) Two Phase Flows and Waves, pp. 1–29. Springer, New York (1990)

    Chapter  Google Scholar 

  3. Baxter, G.W., Behringer, R.P.: Cellular automata models for the flow of granular materials. Physica D 51, 465–471 (1991)

    Article  MATH  Google Scholar 

  4. Bransby, P.L., Blair-Fish, P.M., James, R.G.: An investigation of the flow of granular materials. Powder Technology 8, 197–206 (1973)

    Article  Google Scholar 

  5. Caram, H., Hong, D.C.: Random-walk approach to granular flows. Phys. Rev. Lett. 67, 828–831 (1991)

    Article  Google Scholar 

  6. Chopard, B., Droz, M.: Cellular automata modeling of physical systems. Cambridge University Press (1998)

    Google Scholar 

  7. Cutress, J., Pulfer, R.F.: X-ray investigations of flowing powders. Powder Technology, 212–220 (1967)

    Google Scholar 

  8. Deserable, D., Martinez, J.: Using a cellular automaton for the simulation of flow of granular materials. In: Thornton, Balkema (eds.) Powder and Grains, pp. 345–350 (1993)

    Google Scholar 

  9. Deserable, D., Masson, S., Martinez, J.: Influence of exclusion rules on flow pattern in a lattice-grain model. In: Kishino (ed.) Powders and Grains, pp. 421–424. Swets and Zeitlinger, Lisse (2001)

    Google Scholar 

  10. Drescher, A., Cousens, T.W., Bransby, P.L.: Kinematics of the mass flow of granular material through a plane hopper. Geotechnique 28(1), 27–42 (1978)

    Article  Google Scholar 

  11. Eiksa, O.E., Mosby, J., Enstad, E.: Experimental investigations on the use of Binserts in order to obtain mass flow in silos. In: Proc. Intern. Conference on Silos, PARTEC 1995, Nürnberg, pp. 417–426 (1995)

    Google Scholar 

  12. Fiske, T.J., Railkar, S.B., Kalyon, D.M.: Effects of segregation on the packing of spherical and non-spherical particles. Powder Technology 81, 57–64 (1994)

    Article  Google Scholar 

  13. Frisch, U., Hasslacher, B., Pomeau, Y.: Lattice-gas automata for the Navier-Stokes equation. Phys. Rev. Lett. 56, 1505–1508 (1986)

    Article  Google Scholar 

  14. Gongwen, P., Herrmann, H.J.: Density waves of granular flow in a pipe using lattice-gas automata. Phys. Rev. E 49(3) (1994)

    Google Scholar 

  15. Goles, E., Gonzales, G., Herrmann, H.J., Martinez, S.: Simple lattice model with inertia for sand piles. Granular Matter 1, 137–140 (1998)

    Article  Google Scholar 

  16. Hampe, E.: Silos. VEB Verlag für Bauwesen, Berlin (1987)

    Google Scholar 

  17. Hemmingson, J., Herrmann, H.J., Roux, S.: Vectorial cellular automaton for the stress in granular media. J. Physique 1(7), 291–302 (1997)

    Google Scholar 

  18. Jasti, V.K., Higgs III, C.F.: A fast first order model of a rough annular shear cell using cellular automata. Granular Matter 12(1), 97–106 (2010)

    Article  Google Scholar 

  19. Johanson, J.R.: Controlling flow patterns by bins by use of an insert. Bulk Solid Handling 2(3) (1982)

    Google Scholar 

  20. Kaminski, M., Zubrzycki, M.: Reduzieren des dynamischen Horizontaldruckes in Getreidesilos. Bauingenieur, 313–318 (1985)

    Google Scholar 

  21. Kaminski, M., Antonowicz, R.: The flow of rape seed in silo equipped with a discharge device. Task Quarterly 7(4), 561–569 (2003)

    Google Scholar 

  22. Karolyi, A., Kertesz, J.: Lattice-Gas Model of Avalanches in a Granular Pile. Physical Review E (Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics) 57(1), 852–856 (1998)

    Google Scholar 

  23. Katsura, N., Shimosaka, A., Shirakawa, Y., Hidaka, H.: Simulation for flow behaviour of vibrating granular materials using cellular automata. In: Kishino (ed.) Powders and Grains, pp. 525–528. Swets and Zeitlinger, Lisse (2001)

    Google Scholar 

  24. Kozicki, J., Tejchman, J.: Simulations of granular flow in silos with a cellular automata model. The International Journal of Storing, Handling and Processing Powder 13(3), 267–275 (2001)

    Google Scholar 

  25. Kozicki, J., Tejchman, J.: Simulations of flow patterns in silos with a cellular automaton model – part 1. Task Quarterly 9(1), 81–102 (2005a)

    Google Scholar 

  26. Kozicki, J., Tejchman, J.: Simulations of flow patterns in silos with a cellular automaton model – part 2. Task Quarterly 9(1), 103–114 (2005b)

    Google Scholar 

  27. Kozicki, J., Tejchman, J.: Application of a cellular automaton to simulations of granular flow in silos. Granular Matter 7(1), 45–54 (2005c)

    Article  MATH  Google Scholar 

  28. Litwiniszyn, J.: Application of the equation of stochastic processes to mechanics of loose bodies. Archives of Applied Mechanics 8(4), 393–411 (1956)

    MathSciNet  MATH  Google Scholar 

  29. Martinez, J., Masson, S., Deserable, D.: Flow patterns and velocity profiles during silo discharge simulation with a lattice grain model. In: Proc. Intern. Conference on Silos, PARTEC 1995, Nürnberg, pp. 367–379 (1995)

    Google Scholar 

  30. Michalowski, R.L.: Flow of granular material through a plane hopper. Powder Technology 39, 29–40 (1984)

    Article  Google Scholar 

  31. Michalowski, R.L.: Strain localization and periodic fluctuations in granular flow processes from hoppers. Geotechnique 40(3), 389–403 (1990)

    Article  Google Scholar 

  32. Murakami, A., Sakaguchi, H., Takasuka, H.T., Fuji, H.: Study of microtopology and its evolution in granular materials using a cellular automata model. In: Kishino (ed.) Powders and Grains, pp. 33–36. Swets and Zeitlinger, Lisse (2001)

    Google Scholar 

  33. Osinov, V.A.: A model of a discrete stochastic medium for the problems of loose material flow. Continuum Mechanics and Thermodynamics 6, 51–60 (1994)

    Article  Google Scholar 

  34. Peng, G., Herrmann, H.J.: Density waves of granular flow in a pipe using lattice gas automata. Phys. Rev. 49(3), 1796–1799 (1994)

    Article  Google Scholar 

  35. Pieper, K., Wagner, K.: Der Einfluβ verschiedener Auslaufarten auf die Seitedrücke in Silozellen. Aufbereitungstechnik 10, 542–546 (1968)

    Google Scholar 

  36. Reimbert, M., Reimbert, A.: Silos – Theory and Practice. Trans Tech Publishing, Clausthal (1976)

    Google Scholar 

  37. Safarian, S.S., Harris, E.C.: Design Construction of Silos and Bunkers. Von Nostrand Reinhold Company (1985)

    Google Scholar 

  38. Sakaguchi, H., Murakami, A., Hasegawa, T., Shirai, A.: Connected lattice cellular-automaton particles: model for pattern formation in vibrating granular media. Soils and Foundations 36(1), 105–110 (1996)

    Article  Google Scholar 

  39. Savage, S.B.: Some aspects of confined granular flows. In: Proc. Int. Con. on Silos: Silos – Forschung and Praxis, pp. 111–121. University of Karlsruhe (1992)

    Google Scholar 

  40. Savage, S.B.: Disorder, diffusion and structure formation in granular flows. In: Bideau, D., Hansen, A. (eds.) Disorder and Granular Media, pp. 255–185. North-Holland (1993)

    Google Scholar 

  41. Schwedes, J.: Lagern und Flieβen von Schüttgütern, Hochschulkurs. Script, University of Braunschweig (1999)

    Google Scholar 

  42. Strusch, J., Schwedes, J., Hardow, B.: Inserts loads and wall stress distributions in silos with inserts. In: Proc. Inter. Conference on Silos, PARTEC 1995, Nürnberg, pp. 163–182 (1995)

    Google Scholar 

  43. Tejchman, J.: Shear localization and autogeneous dynamic effects in granular bodies. Publication Series of the Institute for Rock and Soil Mechanics, vol. 140, pp. 1–353. Karlsruhe University (1997)

    Google Scholar 

  44. Tejchman, J., Klisinski, M.: FE-studies on rapid flow of bulk solids in silos. Granular Matter 3(4), 215–231 (2001)

    Article  Google Scholar 

  45. Tejchman, J.: FE modeling of shear localization in granular bodies with micro-polar hypoplasticity. In: Wu, W., Borja, R.I. (eds.) Springer Series in Geomechanics and Geoengineering. Springer, Heidelberg (2008)

    Google Scholar 

  46. Ulm, S.: Random processes and transformations. In: Proc. Int. Con. Math., vol. 2, pp. 264–275 (1952)

    Google Scholar 

  47. Zhou, J.G.: Lattice Boltzman Methods. Springer (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Tejchman .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tejchman, J. (2013). Simulations of Flow Pattern with Cellular Automaton. In: Confined Granular Flow in Silos. Springer Series in Geomechanics and Geoengineering. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00318-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00318-4_9

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00317-7

  • Online ISBN: 978-3-319-00318-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics