Skip to main content

FE Analyses Based on Enhanced Hypoplasticity

  • Chapter
Confined Granular Flow in Silos

Part of the book series: Springer Series in Geomechanics and Geoengineering ((SSGG))

  • 1205 Accesses

Abstract

The numerical results on confined granular flow in silos using the FEM based on an enhanced hypoplastic constitutive model are summarized. Filling and emptying processes are taken into account. Quasi-static and dynamic flow is considered. A mechanism of the silo music is simulated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abaqus, User’s manual, version 6.4. Hibbitt, Karlsson & Sorensen, Inc. (2004)

    Google Scholar 

  2. Bauer, E., Wu, W.: Extension of hypoplastic constitutive model with respect to cohesive powder. In: Siriwardane, H.J., Zaman, M.M. (eds.) Computer Methods and Advances in Geomechanics, Balkema, pp. 531–536 (1994)

    Google Scholar 

  3. Böhrnsen, J.U., Antes, H.: Dynamic behaviour of granular materials during the silo discharge. In: Proc. Int. Symposium on Reliable Flow of Particulate Solids, Telemark College, Porsgrunn, Norway, pp. 665–675 (1996)

    Google Scholar 

  4. DeJong, J.T., White, D.J., Randolph, M.F.: Microscale observation and model-ing of soil-structure interface behavior using particle image velocimetry. Soils and Foundations 46(1), 15–28 (2006)

    Article  Google Scholar 

  5. Drescher, A., Cousens, T.W., Bransby, P.L.: Kinematics of the mass flow of granular material through a plane hopper. Geotechnique 28(1), 27–42 (1978)

    Article  Google Scholar 

  6. Drescher, A.: On the criteria for mass flow in hoppers. Powder Technology 73, 251–260 (1992)

    Article  Google Scholar 

  7. Drescher, A.: Some aspects of flow of granular materials in hoppers. Philosophical Transactions, Royal Society of London 356, 2649–2666 (1998)

    MATH  Google Scholar 

  8. Herle, I.: Hypoplastizität und Granulometrie einfacher Korngerüste. Publication Series of the Institute of Soil and Rock Mechanics, vol. 142. University Karlsruhe (1997)

    Google Scholar 

  9. Janssen, H.A.: Versuche über Getreidedruck in Silozellen. VDI Zeitschrift 39, 35 (1895)

    Google Scholar 

  10. Jenike, A.W., Johanson, J.R., Carson, J.W.: Bin loads – part 2, 3 and 4. Journal of Engineering for Industry ASME, 1–6 (1973)

    Google Scholar 

  11. Lo, S.C.R., Lee, I.K.: Response of granular soil along constant stress ratio path. ASCE Eng. Mech. SM6, 117–141 (1990)

    Google Scholar 

  12. Maier, T.: Comparison of non-local and polar modelling of softening in hypoplasticity. International Journal for Numerical and Analytical Methods in Geomechanics 28(3), 251–268 (2004)

    Article  MATH  Google Scholar 

  13. Michalowski, R.L.: Flow of granular material through a plane hopper. Powder Technology 39, 29–40 (1984)

    Article  Google Scholar 

  14. Michalowski, R.L.: Strain localization and periodic fluctuations in granular flow processes from hoppers. Geotechnique 40(3), 389–403 (1990)

    Article  Google Scholar 

  15. Niemunis, A., Herle, I.: Hypoplastic model for cohesionless soils with elastic strain range. Mechanics of Cohesive-Frictional Materials 2, 279–299 (1997)

    Article  Google Scholar 

  16. Rombach, G.: Schűttguteinwirkungen auf Silozellen. PhD Thesis, University of Karlsruhe (1991)

    Google Scholar 

  17. Schwedes, J.: Flieβverhalten von Schüttgütern in Bunkern. Verlag Chemie, Weinheim (1968)

    Google Scholar 

  18. Schwedes, J., Schulze, D., Kwade, R.: Lagern und Fliessen von Schüttgütern. Skript of the Institut für Mechanische Verfahrenstechnik, Technische Universität Braunschweig (1999)

    Google Scholar 

  19. Silo Standard DIN 1055, Teil 6, Lastanahmen für Bauten (1987)

    Google Scholar 

  20. Stashevskii, S.B.: Stresses in the neighbourhoods of defects in bunker walls. Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh 5, 29–37 (1982)

    Google Scholar 

  21. Stashevskii, S.B.: Neue Silo-Konzepte. Lecture at the Institute for Soil Mechanics, University Karlsruhe (1992)

    Google Scholar 

  22. Tatsuoka, F., Siddiquee, M.S.A., Yoshida, T.: Testing methods and results of element tests and testing conditions of plane strain model bearing capacity tests using air-dried dense Silver Leighton Buzzard Sand. Internal Report, University of Tokyo, 1–120 (1994)

    Google Scholar 

  23. Tejchman, J.: Scherzonenbildung und Verspannungseffekte in Granulaten unter Berücksicht-igung von Korndrehungen. Veröffentlichungen des Institutes für Boden- und Felsmechanik, Universität Karlsruhe 117, 1–236 (1989)

    Google Scholar 

  24. Tejchman, J.: Numerical simulations of filling in silos with a polar hypoplastic constitutive model. Powder Technology 96(3), 227–239 (1998)

    Article  Google Scholar 

  25. Tejchman, J., Ummenhofer, T.: Bedding effects in bulk solids in silos – experiments and a polar hypoplastic approach. Thin-Walled Structures 37(4), 333–361 (2000)

    Article  Google Scholar 

  26. Tejchman, J.: Scale effects in bulk solids during silo flow. The International Journal of Storing, Handling and Processing Powder (Powder Handling and Processing) 13(2), 165–173 (2001)

    Google Scholar 

  27. Tejchman, J.: Effects of wall inclinations and wall imperfections on pressures during silo flow in silos. Kona 20, 1–8 (2002)

    Google Scholar 

  28. Tejchman, J.: Influence of a characteristic length on shear zone formation in hypoplasticity with different enhancements. Computers and Geotechnics 31(8), 595–611 (2004)

    Article  Google Scholar 

  29. Tejchman, J., Wu, W.: FE-investigations of shear localization in granular bodies under high shear rate. Granular Matter 11(2), 115–128 (2009)

    Article  MATH  Google Scholar 

  30. Tejchman, J., Bauer, E.: FE-modeling of shear resistance degradation in granular materials during cyclic shearing under CNS condition. Computers and Geotechnics 36, 249–263 (2009)

    Article  Google Scholar 

  31. Tejchman, J., Wu, W.: Boundary effects on behaviour of granular material during plane strain compression. European Journal of Mechanics / A Solids 29, 18–27 (2010)

    Article  Google Scholar 

  32. Tejchman, J.: FE-investigations of granular material behaviour during cyclic wall shearing under CNS condition. Canadian Geotechnical Journal 47, 985–999 (2010)

    Article  Google Scholar 

  33. Tejchman, J., Wójcik, M.: Experimental and theoretical investigations of some characteristic silo phenomena. Gdańsk University of Technology Publisher, Gdańsk (2011)

    Google Scholar 

  34. van Zanten, D.C., Mooij, A.: Bunker Design, part 2: wall pressures in mass flow. Journal of Engineering for Industry ASME, 814–818 (1977)

    Google Scholar 

  35. Wilde, K., Rucka, M., Tejchman, J.: Silo music – mechanism of dynamic flow and structure interaction. Powder Technology 186, 113–129 (2008)

    Article  Google Scholar 

  36. Wilde, K., Tejchman, J., Rucka, M., Niedostatkiewicz, M.: Experimental and theoretical investigations of silo music. Powder Technology 198(1), 38–48 (2010)

    Article  Google Scholar 

  37. Wojcik, M., Tejchman, J.: Modeling of shear localization during confined granular flow in silos within non-local hypoplasticity. Powder Technology 192(3), 298–310 (2009)

    Article  Google Scholar 

  38. Wójcik, M., Tejchman, J., Enstad, G.G.: Confined granular flow in silos with inserts – full-scale experiments. Powder Technology (2011a) (under review)

    Google Scholar 

  39. Wójcik, M., Tejchman, J., Enstad, G.G.: Modelling of granular flow in a large scale silo silos with insert (2011b) (under preparation)

    Google Scholar 

  40. Wu, W.: Hypoplastizität als mathematisches Modell zum mechanischen Verhalten granularer Stoffe. Publication Series of the Institute of Soil and Rock Mechanics, vol. 129. University Karlsruhe (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Tejchman .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tejchman, J. (2013). FE Analyses Based on Enhanced Hypoplasticity. In: Confined Granular Flow in Silos. Springer Series in Geomechanics and Geoengineering. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00318-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00318-4_8

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00317-7

  • Online ISBN: 978-3-319-00318-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics