FE Analyses Based on Enhanced Hypoplasticity

  • Jacek TejchmanEmail author
Part of the Springer Series in Geomechanics and Geoengineering book series (SSGG)


The numerical results on confined granular flow in silos using the FEM based on an enhanced hypoplastic constitutive model are summarized. Filling and emptying processes are taken into account. Quasi-static and dynamic flow is considered. A mechanism of the silo music is simulated.


Shear Zone Void Ratio Wall Stress Granular Flow Double Cone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abaqus, User’s manual, version 6.4. Hibbitt, Karlsson & Sorensen, Inc. (2004)Google Scholar
  2. 2.
    Bauer, E., Wu, W.: Extension of hypoplastic constitutive model with respect to cohesive powder. In: Siriwardane, H.J., Zaman, M.M. (eds.) Computer Methods and Advances in Geomechanics, Balkema, pp. 531–536 (1994)Google Scholar
  3. 3.
    Böhrnsen, J.U., Antes, H.: Dynamic behaviour of granular materials during the silo discharge. In: Proc. Int. Symposium on Reliable Flow of Particulate Solids, Telemark College, Porsgrunn, Norway, pp. 665–675 (1996)Google Scholar
  4. 4.
    DeJong, J.T., White, D.J., Randolph, M.F.: Microscale observation and model-ing of soil-structure interface behavior using particle image velocimetry. Soils and Foundations 46(1), 15–28 (2006)CrossRefGoogle Scholar
  5. 5.
    Drescher, A., Cousens, T.W., Bransby, P.L.: Kinematics of the mass flow of granular material through a plane hopper. Geotechnique 28(1), 27–42 (1978)CrossRefGoogle Scholar
  6. 6.
    Drescher, A.: On the criteria for mass flow in hoppers. Powder Technology 73, 251–260 (1992)CrossRefGoogle Scholar
  7. 7.
    Drescher, A.: Some aspects of flow of granular materials in hoppers. Philosophical Transactions, Royal Society of London 356, 2649–2666 (1998)zbMATHGoogle Scholar
  8. 8.
    Herle, I.: Hypoplastizität und Granulometrie einfacher Korngerüste. Publication Series of the Institute of Soil and Rock Mechanics, vol. 142. University Karlsruhe (1997)Google Scholar
  9. 9.
    Janssen, H.A.: Versuche über Getreidedruck in Silozellen. VDI Zeitschrift 39, 35 (1895)Google Scholar
  10. 10.
    Jenike, A.W., Johanson, J.R., Carson, J.W.: Bin loads – part 2, 3 and 4. Journal of Engineering for Industry ASME, 1–6 (1973)Google Scholar
  11. 11.
    Lo, S.C.R., Lee, I.K.: Response of granular soil along constant stress ratio path. ASCE Eng. Mech. SM6, 117–141 (1990)Google Scholar
  12. 12.
    Maier, T.: Comparison of non-local and polar modelling of softening in hypoplasticity. International Journal for Numerical and Analytical Methods in Geomechanics 28(3), 251–268 (2004)zbMATHCrossRefGoogle Scholar
  13. 13.
    Michalowski, R.L.: Flow of granular material through a plane hopper. Powder Technology 39, 29–40 (1984)CrossRefGoogle Scholar
  14. 14.
    Michalowski, R.L.: Strain localization and periodic fluctuations in granular flow processes from hoppers. Geotechnique 40(3), 389–403 (1990)CrossRefGoogle Scholar
  15. 15.
    Niemunis, A., Herle, I.: Hypoplastic model for cohesionless soils with elastic strain range. Mechanics of Cohesive-Frictional Materials 2, 279–299 (1997)CrossRefGoogle Scholar
  16. 16.
    Rombach, G.: Schűttguteinwirkungen auf Silozellen. PhD Thesis, University of Karlsruhe (1991)Google Scholar
  17. 17.
    Schwedes, J.: Flieβverhalten von Schüttgütern in Bunkern. Verlag Chemie, Weinheim (1968)Google Scholar
  18. 18.
    Schwedes, J., Schulze, D., Kwade, R.: Lagern und Fliessen von Schüttgütern. Skript of the Institut für Mechanische Verfahrenstechnik, Technische Universität Braunschweig (1999)Google Scholar
  19. 19.
    Silo Standard DIN 1055, Teil 6, Lastanahmen für Bauten (1987)Google Scholar
  20. 20.
    Stashevskii, S.B.: Stresses in the neighbourhoods of defects in bunker walls. Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh 5, 29–37 (1982)Google Scholar
  21. 21.
    Stashevskii, S.B.: Neue Silo-Konzepte. Lecture at the Institute for Soil Mechanics, University Karlsruhe (1992)Google Scholar
  22. 22.
    Tatsuoka, F., Siddiquee, M.S.A., Yoshida, T.: Testing methods and results of element tests and testing conditions of plane strain model bearing capacity tests using air-dried dense Silver Leighton Buzzard Sand. Internal Report, University of Tokyo, 1–120 (1994)Google Scholar
  23. 23.
    Tejchman, J.: Scherzonenbildung und Verspannungseffekte in Granulaten unter Berücksicht-igung von Korndrehungen. Veröffentlichungen des Institutes für Boden- und Felsmechanik, Universität Karlsruhe 117, 1–236 (1989)Google Scholar
  24. 24.
    Tejchman, J.: Numerical simulations of filling in silos with a polar hypoplastic constitutive model. Powder Technology 96(3), 227–239 (1998)CrossRefGoogle Scholar
  25. 25.
    Tejchman, J., Ummenhofer, T.: Bedding effects in bulk solids in silos – experiments and a polar hypoplastic approach. Thin-Walled Structures 37(4), 333–361 (2000)CrossRefGoogle Scholar
  26. 26.
    Tejchman, J.: Scale effects in bulk solids during silo flow. The International Journal of Storing, Handling and Processing Powder (Powder Handling and Processing) 13(2), 165–173 (2001)Google Scholar
  27. 27.
    Tejchman, J.: Effects of wall inclinations and wall imperfections on pressures during silo flow in silos. Kona 20, 1–8 (2002)Google Scholar
  28. 28.
    Tejchman, J.: Influence of a characteristic length on shear zone formation in hypoplasticity with different enhancements. Computers and Geotechnics 31(8), 595–611 (2004)CrossRefGoogle Scholar
  29. 29.
    Tejchman, J., Wu, W.: FE-investigations of shear localization in granular bodies under high shear rate. Granular Matter 11(2), 115–128 (2009)zbMATHCrossRefGoogle Scholar
  30. 30.
    Tejchman, J., Bauer, E.: FE-modeling of shear resistance degradation in granular materials during cyclic shearing under CNS condition. Computers and Geotechnics 36, 249–263 (2009)CrossRefGoogle Scholar
  31. 31.
    Tejchman, J., Wu, W.: Boundary effects on behaviour of granular material during plane strain compression. European Journal of Mechanics / A Solids 29, 18–27 (2010)CrossRefGoogle Scholar
  32. 32.
    Tejchman, J.: FE-investigations of granular material behaviour during cyclic wall shearing under CNS condition. Canadian Geotechnical Journal 47, 985–999 (2010)CrossRefGoogle Scholar
  33. 33.
    Tejchman, J., Wójcik, M.: Experimental and theoretical investigations of some characteristic silo phenomena. Gdańsk University of Technology Publisher, Gdańsk (2011)Google Scholar
  34. 34.
    van Zanten, D.C., Mooij, A.: Bunker Design, part 2: wall pressures in mass flow. Journal of Engineering for Industry ASME, 814–818 (1977)Google Scholar
  35. 35.
    Wilde, K., Rucka, M., Tejchman, J.: Silo music – mechanism of dynamic flow and structure interaction. Powder Technology 186, 113–129 (2008)CrossRefGoogle Scholar
  36. 36.
    Wilde, K., Tejchman, J., Rucka, M., Niedostatkiewicz, M.: Experimental and theoretical investigations of silo music. Powder Technology 198(1), 38–48 (2010)CrossRefGoogle Scholar
  37. 37.
    Wojcik, M., Tejchman, J.: Modeling of shear localization during confined granular flow in silos within non-local hypoplasticity. Powder Technology 192(3), 298–310 (2009)CrossRefGoogle Scholar
  38. 38.
    Wójcik, M., Tejchman, J., Enstad, G.G.: Confined granular flow in silos with inserts – full-scale experiments. Powder Technology (2011a) (under review)Google Scholar
  39. 39.
    Wójcik, M., Tejchman, J., Enstad, G.G.: Modelling of granular flow in a large scale silo silos with insert (2011b) (under preparation)Google Scholar
  40. 40.
    Wu, W.: Hypoplastizität als mathematisches Modell zum mechanischen Verhalten granularer Stoffe. Publication Series of the Institute of Soil and Rock Mechanics, vol. 129. University Karlsruhe (1992)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Faculty of Civil and Environmental EngineeringGdansk University of TechnologyGdansk-WrzeszczPoland

Personalised recommendations