Large Scale Silo Tests

  • Jacek TejchmanEmail author
Part of the Springer Series in Geomechanics and Geoengineering book series (SSGG)


The experimental results from large scale silos in Poland and Germany are shortly described. The silos in Poland were made from the reinforced concrete. The silos in Germany and Norway were steel and aluminium ones. Special attention was paid do strong dynamic effects occurring during silo flow.


Shear Wall Stress Wall Stress Wall Pressure Wall Inclination Double Cone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abd El Rahim, H.: Experimental and theoretical analysis of dynamic effects in cement storage silos. PhD Thesis, Wrocław University of Technology (1991)Google Scholar
  2. 2.
    Borcz, A.: Silos in industry of cohesive bulk solids. Script, Wrocław University of Technology (1987)Google Scholar
  3. 3.
    Borcz, A., Abd El Rahim, H.: A new method of pressure measuring in a bulk solid in a silo. In: Proc. Int. Conf. Silos “Forschung and Praxis”, Tagung 1988, Karlsruhe, pp. 263–368 (1988)Google Scholar
  4. 4.
    Pont, D., Tejchman, J.: A way for suppression of dynamic effects in silos. Patent, Germany, Nr. 19606721.9 (1996)Google Scholar
  5. 5.
    Eiksa, O.E., Mosby, J., Enstad, G.G.: Experimental investigations on the use of BINSERT in order to obtain mass flow in silos. In: Proc. of the 3rd European Symposium on Storage and Flow of Particulate Solids, PARTEC 1995, Nürnberg, pp. 417–426 (1995)Google Scholar
  6. 6.
    Enstad, G.G.: Use of inverted cones and double cones as inserts for obtaining mass flow. POSTEC-Newsleter No. 17, 15–16 (1998)Google Scholar
  7. 7.
    Eurocode 1, BS EN 1991-4: Actions on structures. Part 4: Silos and tanks. General principles and actions for the structural design of tanks and silos (2009)Google Scholar
  8. 8.
    Gladbach, H., Pont, D.: Private communication, Östringen, Germany (1995)Google Scholar
  9. 9.
    Härtl, J., Ooi, J.Y., Rotter, J., Wójcik, M., Ding, S., Enstad, G.G.: The influence of a cone-in-cone insert on flow pattern and wall pressure in a full-scale silo. Chemical Engineering Research and Design 86, 370–378 (2008)CrossRefGoogle Scholar
  10. 10.
    Härtl, J.: A study of granular solids in silos with and without an insert. PhD Thesis, The University of Edinburgh (2008)Google Scholar
  11. 11.
    Huber, G., Tejchman, J., Steinbrunn, R., Cudmani, R.: Dynamic measurements in a silo with polymer granulates. Internal Report of the Institute for Soil Mechanics, Karlsruhe University (1995)Google Scholar
  12. 12.
    Johanson, J.R.: Controlling flow patterns in bins by use of inserts. Bulk Solid Handling 2(3), 495–498 (1982)MathSciNetGoogle Scholar
  13. 13.
    Rappen, A., Wright, H.: Der Einsatz von Luftkanonen zur Beseitigung von Fließproblemen in Bunkers. In: VSR Produktionsübersicht, Engineering Fördertechnik, Mülheim, pp. 1–10 (1985)Google Scholar
  14. 14.
    Safarian, S.S., Harris, E.C.: Design and Construction of Silos and Bunkers. Van Nostrand Reinhold Company, New York (1985)Google Scholar
  15. 15.
    Schulze, D.: Möglichkeiten der Silogestaltung. Schüttgut 1, 19–25 (1995)Google Scholar
  16. 16.
    Standard DIN 18800, part 4, Steel structures: stability, buckling of shells (1990)Google Scholar
  17. 17.
    Szymkowski, J.: Velocity transducer “Peva”. Institute of Mechanical Engineering, Wrocław University of Technology (1992)Google Scholar
  18. 18.
    Tejchman, J., Gudehus, G.: Silo music and silo-quake – experiments and a numerical Cosserat approach. Powder Technology 762, 2010–2212 (1993)Google Scholar
  19. 19.
    Tejchman, J.: Modelling of shear localisation and autogeneous dynamic effects in granular bodies. Publications of the Institute for Soil Mechanics, vol. 140, pp. 1–353. University Karlsruhe (1997)Google Scholar
  20. 20.
    Tejchman, J.: Technical concept to prevent the silo honking. Powder Technology 106, 7–22 (1999)CrossRefGoogle Scholar
  21. 21.
    Uesugi, M.: Friction between dry sand and construction. PhD Thesis, Tokyo Institute of Technology, 1–306 (1987)Google Scholar
  22. 22.
    Wehr, J.: Resonant column tests on polymer granulates. Internal Report of the Institute of Soil and Rock Mechanics, Karlsuhe University (1994)Google Scholar
  23. 23.
    Wójcik, M., Härtl, J., Ooi, J.Y., Rotter, J.M., Ding, S., Enstad, G.G.: Experimental investigation of flow pattern and wall pressure distribution in a silo with double-cone insert. Particle & Particle System Characterization 24(4-5), 296–303 (2007)CrossRefGoogle Scholar
  24. 24.
    Wójcik, M.: Experimental and theoretical investigations of flow pattern and wall pressures in silos with and without inserts. PhD Thesis, Gdańsk University of Technology (2009)Google Scholar
  25. 25.
    Wójcik, M., Tejchman, J., Enstad, G.G.: Confined granular flow in silos with inserts – full-scale experiments. Powder Technology 222, 15–36 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Faculty of Civil and Environmental EngineeringGdansk University of TechnologyGdansk-WrzeszczPoland

Personalised recommendations