Model Silo Tests

  • Jacek TejchmanEmail author
Part of the Springer Series in Geomechanics and Geoengineering book series (SSGG)


The experimental results from model silo tests are summarized. Quasistatic flow and dynamic flow of granular material was investigated in laboratory tests. In addition, the results of deformation measurements in dry cohesionless sand during free flow in model silos are described using 3 different non-invasive methods: particle image velocimetry, electrical capacitance tomography and x-ray tomography.


Particle Image Velocimetry Digital Image Correlation Granular Flow Smooth Wall Loose Sand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adrian, R.J.: Particle imaging technique for experimental fluid mechanics. Ann. Rev. Fluid Mech. 23, 261–304 (1991)CrossRefGoogle Scholar
  2. 2.
    Abellon, R.D., Kolar, Z.I., den Hollander, W., de Goeij, J.J.M., Schouten, J.C., van den Bleek, C.M.: A single radiotracer particle method for the determination of solids circulation rate in interconnected fluidized beds. Powder Technology 92, 53–60 (1997)CrossRefGoogle Scholar
  3. 3.
    Alshibli, K.A., Sture, S., Costes, N.C., Frank, M.L., Lankton, M.R., Batiste, S.N.: Swanson: Assessment of local deformation in sand using X-ray computed tomography. Geotech. Test. J. 23(3), 274–299 (2000)CrossRefGoogle Scholar
  4. 4.
    Baxter, G.W., Behringer, R.P.: Pattern formation and time-dependence in flowing sand. In: Two Phase Flows and Waves, pp. 1–29. Springer, New York (1990)Google Scholar
  5. 5.
    Berthel, A., Bonin, T., Cadilhon, S., Chatellier, L., Kaftandjian, V., Honorat, P., Le Brun, A., Maglaive, J.-C., Moreau, P., Pettier, J.-L., Rebuffel, C., Roenelle, F., Roussilhe, L., Staat, S., Tahon, M., Thiery, T.J.: Digital Radiography: Description and User’s Guide. In: International Symposium on Digital Industrial Radiology and Computed Tomography, DIR 2007, Lyon, France, June 25-27 (2007)Google Scholar
  6. 6.
    Bhandari, A.R., Inoue, J.: Experimental study of strain rates effects on strain localization characteristics of soft rocks. Soils and Foundations 45(1), 125–140 (2005)Google Scholar
  7. 7.
    Bennett, M.A., Luke, S.P., Jia, X., West, R.M., Williams, R.A.: Analysis and flow regime identification of bubble column dynamics. In: Proceedings of 1st World Congress on Industrial Process Tomography, Buxton, England, pp. 54–61 (1999)Google Scholar
  8. 8.
    Blair-Fish, P., Bransby, P.: Flow pattern and wall stresses in a mass-flow bunker. J. Eng. Ind. Trans. ASME B 95(1), 17–26 (1973)CrossRefGoogle Scholar
  9. 9.
    Brzeski, P., Mirkowski, J., Olszewski, T., Pląskowski, A., Smolik, W., Szabatin, R.: Multichannel capacitance tomography for dynamic process imaging. Opto-Electronics Review 11(3), 175–179 (2003)Google Scholar
  10. 10.
    Buffière, J.-Y., Cloetens, P., Ludwig, P., Maire, E., Salvo, L.: In Situ X-Ray Tomography Studies of Microstructural Evolution Combined with 3D Modeling. MRS Bulletin 33 (2008)Google Scholar
  11. 11.
    Buick, J.M., Pankaj, P., Chavez-Sagarnaga, J., Pearce, A., Houghton, G.: Motion of granular particles on the wall of a model silo and the associated wall vibrations. Journal of Applied Physics 37, 2751–2760 (2004)Google Scholar
  12. 12.
    Busignies, V., Leclerc, B., Porion, P., Evesque, P., Couarraze, G., Tchoreloff, P.: Quantitative measurements of localized density variations in cylindrical tablets using X-ray microtomography. European Journal of Pharmaceutics and Biopharmaceutics 64, 38–50 (2006)CrossRefGoogle Scholar
  13. 13.
    Butterfield, R., Harkness, R.M., Andrews, K.Z.: A stereo-photogrammetric technique for measuring displacement fields. Geotechnique 20(3), 308–314 (1970)CrossRefGoogle Scholar
  14. 14.
    Chaniecki, Z., Dyakowski, T., Niedostatkiewicz, M., Sankowski, D.: Application of Electrical Capacitance Tomography for bulk solids flow analysis in silos. Particle & Particle Systems Characterization 23(3-4) (2006)Google Scholar
  15. 15.
    Chou, C.S., Hsu, J.Y., Lau, Y.D.: The granular flow in a two-dimensional flat-bottomed hopper with eccentric discharge. Physica A 308, 46–58 (2002)CrossRefGoogle Scholar
  16. 16.
    Colletta, B., Letouzey, J., Pinedo, R., Ballard, J.F., Balé, P.: Computerized X-ray tomography analysis of sandbox models: Examples of thin-skinned thrust systems. Geology 19(11), 1063–1067 (1991)CrossRefGoogle Scholar
  17. 17.
    DaVis PIV Manual. La Vision (2002) Google Scholar
  18. 18.
    Desrues, J., Chambon, R., Mokni, M., Mazerolle, F.: Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography. Geotechnique 46(3), 529–546 (1996)CrossRefGoogle Scholar
  19. 19.
    Desrues, J., Viggiani, G.: Strain localization in sand: overview of the experiments in Grenoble using stereophotogrammetry. Int. J. Numer. Anal. Methods in Geomech. 28(4), 279–324 (2004)CrossRefGoogle Scholar
  20. 20.
    Drescher A.: Methods for calculations of pressures and flow of granular materials in silo. Warszawa – Poznań (1983) (in Polish)Google Scholar
  21. 21.
    Dyakowski, T., Jeanmeure, L.F.C., Jaworski, A.J.: Applications of electrical tomography for gas-solids and liquid-solids flows-a review. Powder Technology 112, 174–192 (2000)CrossRefGoogle Scholar
  22. 22.
    Eckart, W., Nicholas, J.M., Gray, T., Hutter, K.: PIV for granular avalanches on inclined planes. In: Hutter, K., Kirchner, N. (eds.) Dynamical Response of Granular and Powder Materials in Large and Catastrophic Deformations. LNACM, vol. 11, pp. 195–219. Springer (2003)Google Scholar
  23. 23.
    Enstad, G.: On the theory of arching in mass flow hopper. Chem. Engng. Sci. 30 (1975)Google Scholar
  24. 24.
    Fan, X., Parker, D.J., Smith, M.D.: Labelling a single particle for positron emission particle tracking using direct activation and ion-exchange techniques. Nucl. Instrum. Methods Phys. Res. A 562, 345–350 (2006)CrossRefGoogle Scholar
  25. 25.
    Feser, M., Gelb, J., Chang, H., Cui, H., Duewer, F., Lau, S.H., Tkachuk, A., Yun, W.: Sub-micron resolution CT for failure analysis and process development. Measurement Science and Technology 19 (2008)Google Scholar
  26. 26.
    Fischer, R., Gondret, P., Rabaud, M., Courrech du Pont, S., Perrin, B.: Velocity fields of intermittent granular avalanches. In: Garcia-Rojo, R., Herrmann, H.J., McNamara, S. (eds.) Proc. Int. Conf. Powders and Grains 2005, pp. 803–805. Taylor and Francis Group, London (2005)Google Scholar
  27. 27.
    Fischer, F., Hoppe, D., Schleicher, E., Mattausch, G., Flaske, H., Bartel, R., Hampel, U.: An ultra fast electron beam X-ray tomography scanner. Meas. Sci. Technol. 19, 45–57 (2008)Google Scholar
  28. 28.
    Forsberg, F., Siviour, C.R.: 3D deformation and strain analysis in compacted sugar using X-ray microtomography and digital volume correlation. Meas. Sci. Techno. 20(9), 095703 (2009)CrossRefGoogle Scholar
  29. 29.
    Grudzień, K., Romanowski, A., Williams, R.A.: Application of a Bayesian approach to the tomographic analysis of hopper flow. Particle & Particle Systems Characterization 22(4), 246–253 (2005)CrossRefGoogle Scholar
  30. 30.
    Grudzień, K., Niedostatkiewicz, M., Adrien, J., Tejchman, J., Maire, E.: Quantitative estimation of volume changes of granular materials during silo flow using X-ray tomography. Chemical Engineering and Processing: Process Intensification 50, 59–67 (2011)CrossRefGoogle Scholar
  31. 31.
    Gudehus, G., Tejchman, J.: Some mechanisms of a granular mass in a silo – model tests and a numerical Cosserat approach. In: Brueller, O., Mannel, V., Najar, J. (eds.) Advances in Continuum Mechanics, pp. 178–193. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  32. 32.
    Gudehus, G.: Einige Beiträge der Bodenmechanik zur Entstehung und Auswirkung von Diskontinuitäten. Felsbau 4, 190–195 (1986)Google Scholar
  33. 33.
    Hall, S.A., Wood, D.M., Ibraim, E., Viggiani, G.: Localised deformation patterning in 2D granular materials revealed by digital image correlation. Granular Matter 12(1) (2010)Google Scholar
  34. 34.
    Hammar, L., Wirdelius, H.: Radiographic sensitivity improved by optimized high resolution X-ray detector design. In: International Symposium on Digital Industrial Radiology and Computed Tomography, DIR 2007, Lyon, France, June 25-27 (2007)Google Scholar
  35. 35.
    Handley, M.F., Perry, M.G.: Stresses in granular materials flowing in converging hopper sections. Powder Technology 1(5), 245–251 (1968)CrossRefGoogle Scholar
  36. 36.
    Harris, W.W., Viggiani, G., Mooney, M.A., Finno, R.J.: Use of stereo-photogrammetry to analyze the development of shear bands in sand. Geotechnical Testing Journal 18(4), 405–420 (1995)CrossRefGoogle Scholar
  37. 37.
    Isaksen, Ø.: A review of reconstruction techniques for capacitance tomography. Measurement Science and Technology 7, 325–337 (1996)CrossRefGoogle Scholar
  38. 38.
    James, R.: Stress and strain fields in sand. PhD Thesis, University of Cambridge (1965)Google Scholar
  39. 39.
    Janssen, H.A.: Versuche über Getreidedruck in Silozellen. VDI Zeitschrift 39, 1045–1049 (1895)Google Scholar
  40. 40.
    Jaworski, A., Dyakowski, T.: Application of electrical capacitance tomography for measurement of gas-solids flow characteristics in a pneumatic conveying system. Measurement Science and Technology 12, 1109–1119 (2001)CrossRefGoogle Scholar
  41. 41.
    Jeanmeure, L.F.C., Dyakowski, T., Zimmerman, W.B.J., Baker, G.: Use of Raw Capacitance Tomography Data for Flow Pattern Control. In: Proceedings of 2nd World Congress on Industrial Process Tomography, Hannover, Germany, pp. 12–19 (2001)Google Scholar
  42. 42.
    Jeanmure, L.F.C., Dyakowski, T., Zimmerman, W.B.J., Clark, W.: Direct flow-pattern identification using electrical capacitance tomography. Experimental Thermal and Fluid Science 26, 763–773 (2002)CrossRefGoogle Scholar
  43. 43.
    Jenneson, M., Luggar, R.D., Morton, E.J., Gundogdu, O., Tüzün, U.: Examining nanoparticle assemblies using high spatial resolution X-ray microtomography. J. Appl. Phys. 96, 2889–2895 (2004)CrossRefGoogle Scholar
  44. 44.
    Kaestner, A., Lehmann, E., Stampanoni, M.: Imaging and image processing in porous media research. Advances in Water Resources 31, 1174–1187 (2008)CrossRefGoogle Scholar
  45. 45.
    Kohse, W.C.: Experimentell Untersuchung von Scherfugenmustern in Granulaten. Diplomarbeit, Institute for Soil and Rock Mechanics, University of Karlsruhe, pp. 1–42 (2002)Google Scholar
  46. 46.
    Kozicki, J., Tejchman, J.: Experimental investigations of strain localization in concrete using Digital Image Correlation (DIC) technique. Archives of Hydro-Engineering and Environmental Mechanics 54(1), 3–24 (2007)Google Scholar
  47. 47.
    Leadbeater, T.W.: The development of positron imaging systems for applications in industrial process tomography. PhD Thesis, University of Birmingham, pp. 1–180 (2009)Google Scholar
  48. 48.
    Lenoir, N., Bornert, M., Desrues, J., Besuelle, P., Viggiani, C.: Volumetric digital image correlation applied to X-ray microtomography images from triaxial compression tests on argillaceous rock. Strain 43, 193–205 (2007)CrossRefGoogle Scholar
  49. 49.
    Lionheart, W.R.B.: Developments in EIT reconstruction algorithms: pitfalls, challenges and recent development. Physiol. Meas. 25, 125–142 (2004)CrossRefGoogle Scholar
  50. 50.
    Liu, S., Yang, W.Q., Wang, H., Jiang, F., Su, Y.: Investigation of square fluidized beds using capacitance tomography: preliminary results. Measurement Science and Technology 12, 1120–1125 (2001)CrossRefGoogle Scholar
  51. 51.
    Lueptov, R.M., Akonur, A., Shinbrot, T.: PIV for granular flows. Experiments in Fluids 28, 183–186 (2000)CrossRefGoogle Scholar
  52. 52.
    Maia, N.M.M., Silva, J.M.M.: Theoretical and experimental modal analysis. Research Studies Press Ltd., England (1997)Google Scholar
  53. 53.
    Mallat, S.: A wavelet tour of signal processing. Academic Press (1998)Google Scholar
  54. 54.
    Marasdeh, Q., Wersito, W., Fan, L.-S., Teixeira, F.: Dual imaging modality of granular flow based on ECT sensors. Granular Matter 10, 75–80 (2008)CrossRefGoogle Scholar
  55. 55.
    McCabe, R.P.: Flow patterns in granular materials in circular silos. Geotechnique 1, 45–62 (1974)Google Scholar
  56. 56.
    McConnell, K.G.: Vibration Testing: Theory and Practice. John Wiley & Sons, Inc., New York (1995)zbMATHGoogle Scholar
  57. 57.
    Medina, A., Cordova, J.A., Luna, E., Trevino, C.: Velocity field measurements in granular gravity flow in a near 2D silo. Physics Letters A 250(1-3), 111–116 (1998)CrossRefGoogle Scholar
  58. 58.
    Michalowski, R.L.: Flow of granular material through a plane hopper. Powder Technology 39, 29–40 (1984)CrossRefGoogle Scholar
  59. 59.
    Michalowski, R.L.: Strain localization and periodic fluctuations in granular flow processes from hoppers. Geotechnique 40(3), 389–403 (1990)CrossRefGoogle Scholar
  60. 60.
    Michalowski, R.L., Shi, L.: Strain localization and periodic fluctuations in granular flow processes from hoppers. Journal of Geotechnical and Geoenvironmental Engineering 129(6), 439–449 (2003)CrossRefGoogle Scholar
  61. 61.
    Mokni, M.: Relations entre deformations en masse et deformations localisees dans les materiaux granulaires. PhD Thesis, University of Grenoble (1992)Google Scholar
  62. 62.
    Moreno-Atanasio, R., Williams, R.A., Jia, X.: Combining X-ray microtomography with computer simulation for analysis of granular and porous materials. Particuology 8(2), 81–99 (2010)CrossRefGoogle Scholar
  63. 63.
    Niedostatkiewicz, M.: Dynamic effects in silos. PhD Thesis, Gdansk University of Technology, 1–258 (2002)Google Scholar
  64. 64.
    Niedostatkiewicz, M., Tejchman, J.: Experimental and theoretical studies on resonance dynamic effects during silo flow. Powder Handling and Processing 15(1), 36–42 (2003)Google Scholar
  65. 65.
    Niedostatkiewicz, M., Tejchman, J.: Measurements of changes of the bulk solid density during granular flow in silos. Powder Handling & Processing 17(2), 76–83 (2005)Google Scholar
  66. 66.
    Niedostatkiewicz, M., Tejchman, J.: Application of a Particle Image Velocimetry technique for deformation measurements of bulk solids during silo flow. Powder Handling & Processing 17(4), 216–220 (2005)Google Scholar
  67. 67.
    Niedostatkiewicz, M., Tejchman, J.: Investigations of porosity changes during granular silo flow using Electrical Capacitance Tomography (ECT) and Particle Image Velocimetry (PIV). Particle & Particle Systems Characterization 24(4-5), 304–312 (2007)CrossRefGoogle Scholar
  68. 68.
    Niedostatkiewicz, M., Tejchman, J.: Reduction of dynamic effects during granular flow in silos. Bulk Solids & Powder Science and Technology Journal 3(1) (2008)Google Scholar
  69. 69.
    Niedostatkiewicz, M., Tejchman, J., Chaniecki, Z., Grudzień, K.: Determination of bulk solid concentration changes during granular flow in a silo with ECT sensors. Chemical Engineering Science 64, 20–30 (2009)CrossRefGoogle Scholar
  70. 70.
    Niedostatkiewicz, M., Grudzień, K., Chaniecki, Z., Tejchman, J.: Application of ECT to solid concentration measurements during granular flow in a rectangular model silo. Chemical Engineering Research and Design 88, 1037–1048 (2010)CrossRefGoogle Scholar
  71. 71.
    Niedostatkiewicz, M., Leśniewska, D., Tejchman, J.: Experimental analysis of shear zone patterns in sand for earth pressure problems using Particle Image Velocimetry. Strain 47(s2), 218–231 (2011)CrossRefGoogle Scholar
  72. 72.
    Niedostatkiwwicz, M., Wójcik, M., Tejchman, J.: Reduction of dynamic effects in silos in Austria. Internal Report of Gdańsk University of Technology (2012)Google Scholar
  73. 73.
    Nübel, K.: Publication Series of the Institute of Soil and Rock Mechanics, vol. 62. University of Karlsruhe (2002)Google Scholar
  74. 74.
    Oakley, J.P., Bair, M.S.: A mathematical model for the multi-electrode capacitance sensor. Measurement Science and Technology 6, 1617–1630 (1995)CrossRefGoogle Scholar
  75. 75.
    Ostendorf, M., Schwedes, J.: Application of Particle Image Velocimetry for velocity measurements during silo discharge. Powder Technology 158, 69–75 (2005)CrossRefGoogle Scholar
  76. 76.
    Parker, D.J., Forster, R.N., Fowles, P., Takhar, P.N.: Positron emission particle tracking using the new Birmingham positron camera. Nucl. Instrum. Methods Phys. Res. A 477, 540–545 (2002)CrossRefGoogle Scholar
  77. 77.
    Perry, M.G., Rothwell, E., Woodfin, W.T.: Model studies of mass flow bunkers II: Velocities distribution in the discharge of solids from mass flow bunkers. Powder Technology 14, 81–92 (1976)CrossRefGoogle Scholar
  78. 78.
    Pląskowski, A., Beck, M.S., Thorn, R., Dyakowski, T.: Imaging industrial flows applications of electrical process tomography, vol. 214. Institute of Physics Publishing, Bristol (1995)Google Scholar
  79. 79.
    Raffel, M., Willert, C., Kompenhaus, J.: Particle Image Velocimetry. Springer, Heidelberg (1998)Google Scholar
  80. 80.
    Rechenmacher, A.L., Finno, R.J.: Digital image correlation to evaluate shear banding in dilative sands. Geotechnical Testing Journal 27(1), 13–22 (2004)CrossRefGoogle Scholar
  81. 81.
    Rechenmacher, A.L.: Grain-scale processes governing shear band initiation and evolution in sands. J. of the Mechanics and Physics of Solids 54, 22–45 (2006)zbMATHCrossRefGoogle Scholar
  82. 82.
    Remeysen, K., Swennen, R.: Beam hardening artifact reduction in micro-focus computed tomography for improved quantitative coal characterization. International Journal of Coal Geology 67, 101–111 (2006)CrossRefGoogle Scholar
  83. 83.
    Richard, P., Philippe, P., Barbe, F., Bourles, S., Thibault, X., Bideau, D.: Analysis by X-ray Microtomography of a granular packing undergoing compaction. Physical Review E 68, 020301 (2003)CrossRefGoogle Scholar
  84. 84.
    Reimbert, M., Reimbert, A.: Silos – Theory and Practice. Trans Tech Publishing, Clausthal (1976)Google Scholar
  85. 85.
    Roscoe, K.H., Arthur, J.R.F., James, R.G.: The determination of strains in soils by an X-ray method. Civ. Eng. Public Works Rev. 58, 873–876, 1009–1012 (1963)Google Scholar
  86. 86.
    Rucka, M., Wilde, K.: Application of continuous wavelet transform in vibration based damage detection method for beam and plates. Journal of Sound and Vibration 297, 536–550 (2006)CrossRefGoogle Scholar
  87. 87.
    Safarian, S.S., Harris, E.C.: Design and construction of silos and bunkers. Van Nostrand Reinhold Co. (1985)Google Scholar
  88. 88.
    Schulze, D., Lyle, C., Schwedes, J.: Meβaufnehmer zur experimentellen Ermittlung von Spannungen im Grenzbereich Schüttgut-Wand. Report of SFB 219 Silos – Forschung und Praxis, pp. 333–344. Karlsruhe University (1988)Google Scholar
  89. 89.
    Scott, D.M., McCann, H.: Process imaging for automatic control. Taylor and Francis Group, p. 439 (2005)Google Scholar
  90. 90.
    Shi, B., Murakami, Y., Wu, Z., Chen, J., Inyang, H.: Monitoring of internal failure evolution in soils using computerization X-ray tomography. Engineering Geology 54(3-4) (1999)Google Scholar
  91. 91.
    Sideman, S., Hijikata, K.: Imaging in Transport Processes, p. 621. Begell House (1993)Google Scholar
  92. 92.
    Sikora, J.: Algorytmy numeryczne w tomografii impedancyjnej i wiroprądowej. Warszawa. Oficyna Wydawnicza Politechniki Warszawskiej II 212 (2000) (in Polish)Google Scholar
  93. 93.
    Silo Standard DIN 1055, Teil 6, Lastanahmen für Bauten (1987)Google Scholar
  94. 94.
    Sielamowicz, I., Kowalewski, T., Błoński, S.: Application of digital particle image velocimetry in registrations of central and eccentric granular material flows. In: Garcia-Rojo, R., Herrmann, H.J., McNamara, S. (eds.) Proc. Int. Conf. Powder and Grains 2005, pp. 903–908 (2005)Google Scholar
  95. 95.
    Sielamowicz, I., Czech, M., Kowalewski, T.A.: Empirical description of flow parameters in eccentric flow inside a silo model. Powder Technology 198(3), 381–394 (2010)CrossRefGoogle Scholar
  96. 96.
    Skarżynski, L., Syroka, E., Tejchman, J.: Measurements and calculations of the width of the fracture process zones on the surface of notched concrete beams. Strains (2009), doi:10.1111/j.1475-1305.2008.00605.xGoogle Scholar
  97. 97.
    Slominski, C., Niedostatkiewicz, M., Tejchman, J.: Deformation measurements in granular bodies using a Particie Image Velocimetry technique. Archives of Hydro-and Environmental Engineering 53(1), 71–94 (2006)Google Scholar
  98. 98.
    Slominski, C., Niedostatkiewicz, M., Tejchman, J.: Application of particle image velocimetry (PIV) for deformation measurement during granular silo flow. Powder Technology 173(1), 1–18 (2007)CrossRefGoogle Scholar
  99. 99.
    Smith, S.W.: The scientist and engineer’s guide to digital signal processing. California Technical Publishing (1997)Google Scholar
  100. 100.
    Stock, S.R.: Recent advances in X-ray micro-tomography applied to material. International Materials Reviews 53(3), 129–181 (2008)CrossRefGoogle Scholar
  101. 101.
    Sutton, M.A., McNeill, S.R., Helm, J.D., Chao, Y.J.: Advances in two-dimensional and three-dimensional computer vision. Photemechanics, Topics in Applied Physics 77, 323–372 (2000)CrossRefGoogle Scholar
  102. 102.
    Tan, S., Fwa, T.: Influence of voids on density measurements of granular materials using gamma radiation techniques. Geotech. Test Journal 14(3), 257–265 (1991)CrossRefGoogle Scholar
  103. 103.
    Tejchman, J.: Dynamic phenomena in model silos. Int. Report of Institute for Rock and Soil Mechnics, Karlsruhe University (1987)Google Scholar
  104. 104.
    Tejchman, J.: Scherzonenbildung und Verspannugseffekte in Granulaten unter Berücksichtigung von Korndrehungen. Veröffentlichung des Instituts für Boden- und Felsmechanik der Universität Karlsruhe 117, 1–236 (1989)Google Scholar
  105. 105.
    Tejchman, J.: Behaviour of a granular medium in a silo – model tests in a plane silo with parallel walls, part 1. Arch. of Civil Engng. 38(4), 375–394 (1992a)Google Scholar
  106. 106.
    Tejchman, J.: Behaviour of a granular medium in a silo – model tests in a plane silo with convergent walls, part 2. Arch. of Civil Engng. 38(4), 395–414 (1992b)Google Scholar
  107. 107.
    Tejchman, J., Gudehus, G.: Silo music and silo quake – experiments and a numerical Cosserat approach. Powder Technology 76, 201–212 (1993)CrossRefGoogle Scholar
  108. 108.
    Tejchman, J., Wu, W.: Experimental and numerical study of sand-steel interfaces. Int. Journal of Numerical and Anal. Methods in Geomechanics 19(8), 513–537 (1995)CrossRefGoogle Scholar
  109. 109.
    Tejchman, J.: Modelling of shear localisation and autogeneous dynamic effects in granular bodies. Publication Series of the Institute of Soil Mechanics and Rock Mechanics, pp. 1–283. Karlsruhe University (1997)Google Scholar
  110. 110.
    Tejchman, J.: Silo-quake – measurements, a numerical polar approach and a way for its suppression. Thin-Walled Structures 31(1-3), 137–158 (1998)CrossRefGoogle Scholar
  111. 111.
    Tejchman, J.: Technical concept to prevent the silo honking. Powder Technology 106, 7–22 (1999)CrossRefGoogle Scholar
  112. 112.
    Tejchman, J., Gudehus, G.: Verspannung, Scherfugenbildung und Selbsterregung bei der Siloentleerung. In: Eibl, J., Gudehus, G. (eds.) Silobauwerke und ihre spezifischen Beanspruchungen, Deutsche Forschungsgemeinschaft. Wiley-VCH, pp. 245–284 (2000)Google Scholar
  113. 113.
    Tejchman, J.: FE modeling of shear localization in granular bodies with micro-polar hypoplasticity. In: Wu, W., Borja, R. (eds.). Springer Series in Geomechanics and Geoengineering. Springer, Heidelberg (2008)Google Scholar
  114. 114.
    Tüzün, U., Nedderman, R.M.: Gravity flow of granular materials round obstacles-I: Investigation of the effects of inserts on flow patterns inside a silo. Chemical Engineering Science 40(3), 325–336 (1985)CrossRefGoogle Scholar
  115. 115.
    Vacher, P., Dumoulin, S., Morestin, F., Mguil-Touchai, S.: Bidimensional strain measurement using digital images. Proc. Inst. Mech. Eng. 213, 811 C–817 C (1999)Google Scholar
  116. 116.
    Vardoulakis, I.: Scherfugenbildung in Sandkörpern als Verzweigungsproblem. PhD Thesis, Institute for Soil and Rock Mechanics, University of Karlsruhe, 70 (1977)Google Scholar
  117. 117.
    Vardoulakis, I., Graf, B., Gudehus, G.: Trap-door problem with dry sand: a statical approach based upon model test kinematics. Int. J. Numer. Anal. Meth. Geomech. 5, 57–78 (1981)CrossRefGoogle Scholar
  118. 118.
    Warsito, W., Fan, L.-S.: Neural network multi-criteria optimization image reconstruction technique (NN-MOIRT) for linear and non-linear process tomography. Chemical Engineering and Processing 42, 663–674 (2003)CrossRefGoogle Scholar
  119. 119.
    West, R.M., Jia, X., Williams, R.A.: Parametric modelling in industrial process tomography. Chemical Engineering Journal 77(1-2), 31–36 (2000)CrossRefGoogle Scholar
  120. 120.
    Westcott, W.: Bells and their music. G. P. Putnam, New York (1970)Google Scholar
  121. 121.
    White, D.J., Take, W.A., Bolton, M.D.: Soil deformation measurements using particle image velocimetry (PIV) and photogrammetry. Geotechnique 53(7), 619–631 (2003)CrossRefGoogle Scholar
  122. 122.
    Wilde, K., Rucka, M., Tejchman, J.: Silo music – mechanism of dynamic flow and structure interaction. Powder Technology 186, 113–129 (2008)CrossRefGoogle Scholar
  123. 123.
    Wilde, K., Tejchman, J., Rucka, M., Niedostatkiewicz, M.: Experimental and theoretical investigations of silo music. Powder Technology 198(1), 38–48 (2010)CrossRefGoogle Scholar
  124. 124.
    Williams, R.A., Beck, M.S.: Process Tomography-principles, techniques and applications, vol. 507. Butterworth-Heinemann, Oxford (1995)Google Scholar
  125. 125.
    Williams, R.A., Jia, X.: Tomographic imaging of particulate systems. Advanced Powder Technology 14(1), 1–16 (2003)CrossRefGoogle Scholar
  126. 126.
    Yang, W.Q.: Hardware design of electrical capacitance tomography systems. Measurement Science and Technology 7, 225–232 (1996)CrossRefGoogle Scholar
  127. 127.
    Yang, W.Q., Peng, L.: Image reconstruction algorithms for electrical capacitance tomography. Measurement Science and Technology 14, R1–R13 (2003)Google Scholar
  128. 128.
    Yoshida, T., Tatsuoka, F., Siddique, M.: Shear banding in sands observed in plane strain compression. In: Chambon, R., Desrues, J., Vardoulakis, I. (eds.) Localisation and Bifurcation Theory for Soils and Rocks, pp. 165–181. Balkema, Rotterdam (1994)Google Scholar
  129. 129.
    Zou, L., Zhang, Y., Yao, D., Peng, L., Zhang, B.: Using Principal Component Analysis to Measure Two-Phase Flow Concentration. In: Proceedings of 2nd World Congress on Industrial Process Tomography, Hanover, Germany, pp. 35–40 (2001)Google Scholar
  130. 130.
    Xie, C.G., Huang, S.M., Hoyle, B.S., Thorn, R., Lenn, C., Snowden, D., Beck, M.S.: Electrical capacitance tomography for flow imaging-system model for development of image reconstruction algorithms and design of primary sensors. IEE Proc. G 139, 89–98 (1992)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Faculty of Civil and Environmental EngineeringGdansk University of TechnologyGdansk-WrzeszczPoland

Personalised recommendations