Advertisement

Abstract

In this Chapter, the literature overview is given with respect to numerical models describing silo flow, shear zone formation during flow, coupled dynamic-acoustic effects and silo inserts.

Keywords

Particle Image Velocimetry Shear Zone Granular Material Wall Pressure Granular Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahn, H.: Computer simulation of rapid granular flow through an orifice. J. of Applied Mechanics 74, 111–118 (2007)zbMATHGoogle Scholar
  2. 2.
    Alshibli, K.A., Sture, S.: Shear band formation in plane strain experiments of sand. Journal of Geotechnical and Geoenvironmental Engineering ASCE 126(6), 495–503 (2000)Google Scholar
  3. 3.
    Ananda, K.S., Sudheshna, M., Prabhu, R.N.: Kinematics and statistics of dense, slow granular flow through vertical channels. J. Fluid Mech. 610, 69–97 (2008)zbMATHGoogle Scholar
  4. 4.
    Andreotti, B.: Sonic sands. Rep. Prog. Phys. 75, 026602 (2012)Google Scholar
  5. 5.
    Antonowicz, R.: Effect of geometric parameters of reducing devices on flow pattern and load distribution in silos with large diameters. PhD Thesis, Wrocław Univer-sity of Technology (2004) (in polish)Google Scholar
  6. 6.
    Bagnold, R.A.: Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. London A 225, 49–63 (1954)Google Scholar
  7. 7.
    Baxter, G.W., Behringer, R.P.: Pattern formation and time-dependence in flowing sand. In: Two-Phase Flows and Waves, pp. 1–19. Springer (1990)Google Scholar
  8. 8.
    Benink, E.: Flow and stress analysis of cohesionless bulk materials in silos related to codes. PhD Thesis, University of Twente, Enschede (1989)Google Scholar
  9. 9.
    Bonneau, L., Catelin-Jullien, T., Andreotti, B.: Friction-induced amplification of acous-tic waves in a low Mach number granular flow. Physical Review E 82, 011309-1–011309-10 (2010)Google Scholar
  10. 10.
    Böhrnsen, J.U., Antes, H.: Dynamic behaviour of granular materials during the silo discharge. In: Proc. Int. Symposium on Reliable Flow of Particulate Solids, Telemark College, Porsgrunn, pp. 665–675 (1999)Google Scholar
  11. 11.
    Böhrnsen, J.U., Antes, H., Ostendorf, M., Schwedes, J.: Silo discharge: measurement and simulation of dynamic behavior in bulk solids. Chem. Eng. Technol. 27, 71–76 (2004)Google Scholar
  12. 12.
    Börzsönyi, T., Kovács, Z.: High-speed imaging of travelling waves in a granular material during silo discharge. Phys. Rev. E 83, 032301-1–032301-4 (2011)Google Scholar
  13. 13.
    Bransby, P.L., Blair-Fish, P.M., James, R.G.: An investigation of the flow of granular materials. Powder Technology, 197–206 (1973)Google Scholar
  14. 14.
    Bucklin, R.A., Molenda, M., Bridges, I.J.: Slip-stick frictional behavior of wheat on galvanized steel. Trans. of the ASAE 39(2), 649–653 (1996)Google Scholar
  15. 15.
    Buick, J.M., Pankai, Y., Ooi, J.Y., Chavez-Sagarnaga, J., Pearce, A., Houghton, G.: Motion of granular particles on the wall of a model silo and the associated wall vibrations. J. Phys. D: Appl. Phys. 37, 2751–2760 (2004)Google Scholar
  16. 16.
    Buick, J.M., Chavez-Sagarnaga, J., Zhing, Z., Ooi, J.Y., Pankaj, D., Cambell, C.A.: Greated. Investigation of silo-honking: slip-stick excitation and wall vibration. Journal of Engineering Mechanics ASCE 131(3), 299–307 (2005)Google Scholar
  17. 17.
    Cutress, J.O., Pulfer, R.F.: X-ray investigations of flowing powders. Powder Technology 1, 213–220 (1967)Google Scholar
  18. 18.
    Desrues, J., Chambon, R., Mokni, M., Mazerolle, F.: Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography. Géotechnique 46(3), 529–546 (1996)Google Scholar
  19. 19.
    Dhoriyani, M.L., Jonnalagadda, K.K., Kandikatla, R.K., Rao, K.K.: Silo music: sound emission during the flow of granular materials through tubes. Powder Technology 167, 55–71 (2006)Google Scholar
  20. 20.
    Drescher, A., Cousens, T.W., Bransby, P.L.: Kinematics of the mass flow of granular material through a plane hopper. Geotechnique 28(1), 27–42 (1978)Google Scholar
  21. 21.
    Drescher, A.: On the criteria for mass flow in hoppers. Powder Technology 73, 251–260 (1992)Google Scholar
  22. 22.
    Drescher, A.: Some aspects of flow of granular materials in hoppers. Philosophical Transactions, Royal Society of London 356, 2649–2666 (1998)zbMATHGoogle Scholar
  23. 23.
    Dufour, F.: Particle in cell formulation for large deformation in Cosserat continua. Lecture. In: Lecture, International Workshop on Bifurcation and Localisation in Geomechanics, The University of Western Australia, Perth (1999)Google Scholar
  24. 24.
    Eibl, J., Rombach, G.: Consistent Modelling of Filling and Discharging Processes in Silos. In: Intern. Conf. Silos-Forschung und Praxis, SFB 219, pp. 1–15. Universität Karlsruhe (1998)Google Scholar
  25. 25.
    Elaskar, S.A., Godoy, L.A., Gray, D.D., Stiles, J.M.: A viscoplastic approach to model the flow of granular solids. International Journal of Solids and Structures 37, 2185–2214 (2000)zbMATHGoogle Scholar
  26. 26.
    Enstad, G.G.: Investigation of the use of insert in order to obtain Mass Flow in Silos. POSTEC-Newsletter No. 15, 13–16 (1996)Google Scholar
  27. 27.
    Enstad, G.G.: Further investigation of the use of insert in order to obtain mass flow in silos. POSTEC-Newsleter No. 16, 15–18 (1997)Google Scholar
  28. 28.
    Enstad, G.G.: Use of inverted cones and double cones as inserts for obtaining mass flow. POSTEC-Newsleter No. 17, 15–16 (1998)Google Scholar
  29. 29.
    Feras, Y., Fraige, F.Y., Langston, P.A., Matchett, A.J., Dodds, J.: Vibration induced flow in hoppers: DEM 2D polygon model. Particuology 6(6), 455–466 (2008)Google Scholar
  30. 30.
    Finno, R.J., Harris, W., Mooney, M., Viggiani, G.: Strain localization and undrained steady state of sand. Journal of Geotechnical Engineering ASCE 122(6), 462–473 (1996)Google Scholar
  31. 31.
    Fütterer, G.: Untersuchungen zum schnellen Fließen von trockenen, kohäsionslosen Schüttgütern in konvergenten Schächten. PhD Thesis, Karlsruhe University, pp. 1–140 (1991)Google Scholar
  32. 32.
    GDR MiDi: On dense granular flows. J. Eur. Phys. E 14, 341–365 (2004)Google Scholar
  33. 33.
    Godoy, L.A., Elaskar, S.A.: Wall pressures in cylindrical silos with geometric distortions during gravity discharge. Powder Handling and Processing 11(4), 407–410 (1999)Google Scholar
  34. 34.
    Grudzień, K., Niedostatkiewicz, M., Adrien, J., Tejchman, J., Maire, E.: Quantitative estimation of volume changes of granular materials during silo flow using X-ray tomography. Chemical Engineering and Processing: Process Intensification 50, 59–67 (2011)Google Scholar
  35. 35.
    Gudehus, G., Tejchman, J.: Some mechanisms of a granular mass in a silo – model tests and a numerical Cosserat approach. In: Brüller, O., Mannel, V., Najar, J. (eds.) Advances in Continuum Mechanics, dedicated to H. Lippmann, pp. 178–193. Springer, Heidelberg (1991)Google Scholar
  36. 36.
    Gutfraind, R., Pouliquen, O.: Study of the origin of shear zones in quasi-static vertical chute flows by using discrete particle simulations. Mechanics of Materials 24, 273–285 (1996)Google Scholar
  37. 37.
    Haff, P.K.: Grain flow as a fluid – mechanical phenomenon. J. Fluid Mech. 134, 401–430 (1983)zbMATHGoogle Scholar
  38. 38.
    Hanes, D.M., Inman, D.I.: Observations of rapidly flowing granular-fluid materials. J. Fluid Mech. 150, 357–380 (1985)Google Scholar
  39. 39.
    Hardow, B., Schulze, D., Schwedes, J.: An experimental analysis of the silo quaking phenomenon. In: Proc. 3rd World Congress on Particle Technology, Brighton, England (1998)Google Scholar
  40. 40.
    Hatamura, Y., Takeuchi, T.: Analysis of physical phenomena in silos. In: Biarez, J., Gourves, R. (eds.) Int. Conf. Powders and Grains, pp. 445–452. Rotterdam, Balkema (1989)Google Scholar
  41. 41.
    Härtl, J., Ooi, J.Y., Rotter, J., Wójcik, M., Ding, S., Enstad, G.G.: The influence of a cone-in-cone insert on flow pattern and wall pressure in a full-scale silo. Chemical Engineering Research and Design 86, 370–378 (2008)Google Scholar
  42. 42.
    Häußler, U., Eibl, J.: Numerical investigation of discharging silos. J. Engineering Mechanics 110, 957–971 (1984)Google Scholar
  43. 43.
    Hirshfeld, D., Rapaport, D.C.: Granular flow from a silo: discrete-particle simulations in three dimensions. Eur. Phys. J. E. 4, 193–199 (2001)Google Scholar
  44. 44.
    Hsiau, S.S., Smid, J., Tsai, S.A., Tzeng, C.C., Yu, Y.J.: Flow of filter granules in moving granular beds with louvers and sublouvers. Chemical Engineering and Processing 47, 2084–2097 (2008)Google Scholar
  45. 45.
    Hungr, O., Morgenstern, N.R.: Experiments on the flow behaviour of granular materials at high velocity in an open channel. Geotechnique 34(3), 405–413 (1984)Google Scholar
  46. 46.
    Ichiba, K., Iwashita, K., Oda, M.: Experimental study on stress ratio in rapid granular shear flow. In: Garcia-Rojo, R., Herrmann, H.J., McNamara, S. (eds.) Powders and Grains 2005, pp. 751–755. Taylor and Francis Group (2005)Google Scholar
  47. 47.
    Jaeger, H.M., Nagel, S.R., Behringer, R.P.: Granular solids, liquids and gases. Reviews of Modern Physics 68(4), 1259–1273 (1996)Google Scholar
  48. 48.
    Jenike, A.W.: Storage and Flow of Solids. Bulletin No. 123 of the Utah Engineering Experiment Station, University of Utah 53(26), 197 (1964)Google Scholar
  49. 49.
    Jenkins, J.T., Savage, S.B.: A theory for the rapid flow of identical, smooth, nearly elastic spherical particles. J. Fluid Mech. 130, 197–202 (1983)Google Scholar
  50. 50.
    Jenkins, J.T.: Boundary conditions for rapid granular flow: flat, frictional walls. Journal of Applied Mechanics 59, 120–127 (1992)zbMATHGoogle Scholar
  51. 51.
    Johanson, J.R., Kleysteuber, W.K.: Flow corrective inserts in bins. Chemical Engineering Progress 62(11), 79–83 (1966)Google Scholar
  52. 52.
    Johanson, J.R.: The placement of inserts to correct flow in bins. Powder Technology 1, 328–333 (1967)Google Scholar
  53. 53.
    Johanson, J.R.: Controlling flow patterns in bins by use of inserts. Bulk Solid Handling 2(3), 495–498 (1982)MathSciNetGoogle Scholar
  54. 54.
    Johanson, K.: Predicting cone-in-cone blender efficiencies from key material properties. Powder Technology 170(3), 109–124 (2006)Google Scholar
  55. 55.
    Jop, P., Forterre, Y., Pouliquen, O.: A constitutive law for dense granular flows. Nature 441, 727 (2006)Google Scholar
  56. 56.
    Kafui, K.D., Thornton, C.: Some observations on granular flow in hoppers and silos. In: Behringer, Jenkins (eds.) Powders and Grains, pp. 511–514. Rotterdam, Balkema (1997)Google Scholar
  57. 57.
    Kaitna, R., Rickenmann, D., Schatzmann, M.: Experimental study on rheologic behaviour of debris flow material. Acta Geotechnica 2, 71–85 (2007)Google Scholar
  58. 58.
    Kaminski, M., Zubrzycki, M.: Reduzieren des dynamischen Horizontaldruckes in Getreidesilos. Bauingenieur, 313–318 (1985)Google Scholar
  59. 59.
    Kaminski, M., Antonowicz, R.: The flow of rape seed in silo equipped with a discharge device. Task Quarterly 7(4), 561–569 (2003)Google Scholar
  60. 60.
    Karlsson, T., Klisiński, M., Runesson, K.: Finite element simulations of granular flow in plane silos with complicated geometry. Powder Technology 99, 29–39 (1998)Google Scholar
  61. 61.
    Kobielak, S., Zamorski, A.: Redistribution of grain pressure in silos with inserts. In: The Third Israeli Conference for Conveing and Handling of Particular Solids, Israel (2000)Google Scholar
  62. 62.
    Lade, P.V.: Instability, shear banding and failure in granular materials. International of Solids and Structures 39, 3337–3357 (2002)Google Scholar
  63. 63.
    Lambe, T.W., Whitman, R.V.: Soil Mechanics. Wiley & Sons (1969)Google Scholar
  64. 64.
    Langston, P.A., Heyes, D.M., Tüzün, U.: Discrete Element Simulation of Granular Flow in Hoppers. In: Proc. of the 3rd European Symposium on Storage and Flow of Particulate Solids, PARTEC 1995, Nürnberg, Germany, pp. 357–367 (1995)Google Scholar
  65. 65.
    Leppert, C., Dinkler, D.: A viscous model for free surface granular flow in silos. In: Garcia-Rojo, R., Herrmann, H.J., McNamara, S. (eds.) Powders and Grains 2005, pp. 461–464. Taylor and Francis Group (2005)Google Scholar
  66. 66.
    Lia, J.T., Langston, P.A., Webb, C., Dyakowski, T.: Flow of sphero-disc particles in rectangular hoppers – a DEM and experimental comparison in 3D. Chemical Engineering Science 59(24), 5917–5929 (2004)Google Scholar
  67. 67.
    Löffelmann, F.: Theoretische und experimentelle Untersuchungen zur Schüttgut-Wand-Wechselwirkung und zum Mischen und Entimischen von Granulaten. PhD Thesis, Karlsruhe University (1989)Google Scholar
  68. 68.
    Luding, S., Duran, J., Clement, E., Rejchenbach, J.: Computer simulations and experiments of dry granular media: polydisperse disks in a vertical pipe. In: Proc. 5th World Congress of Chemical Engineering, San Diego, vol. 5, pp. 325–330 (1996)Google Scholar
  69. 69.
    Lun, C.K.K., Savage, S.B.: A simple kinetic theory for granular flow of rough, inelastic spherical particle. J. Appl. Mech. 54, 47–53 (1987)zbMATHGoogle Scholar
  70. 70.
    Markauskas, D., Kacianauskas, R.: Investigation of rice grain flow by multisphere particle model with rolling resistance. Granular Matter (2010), doi:10.1007/s10035-010-0196-5Google Scholar
  71. 71.
    Martinez, J., Masson, S., Deserable, D.: Flow Patterns and Velocity Profiles during Silo Discharge Simulation with a Lattice Grain Model. In: Proc. of the 3rd European Symposium Storage and Flow of Particulate Solids, PARTEC 1995, Nürnberg, Germany, pp. 367–379 (1995)Google Scholar
  72. 72.
    McCabe, R.P.: Flow patterns in granular materials in circular silos. Geotechnique 1, 45–62 (1974)Google Scholar
  73. 73.
    Mehrafza, M.: Entleerungsdrücke in Massefluss-Silos. PhD Thesis, Karlsruhe University, pp. 1–280 (2000)Google Scholar
  74. 74.
    Michalowski, R.L.: Flow of granular material through a plane hopper. Powder Technology 39, 29–40 (1984)Google Scholar
  75. 75.
    Michalowski, R.L.: Strain localization and periodic fluctuations in granular flow processes from hoppers. Geotechnique 40(3), 389–403 (1990)Google Scholar
  76. 76.
    Mohan, L.S., Nott, P.R., Rao, K.K.: A frictional Cosserat model for the flow of granular materials through a vertical channel. J. Fluid Mech. 457, 377–409 (2002)MathSciNetzbMATHGoogle Scholar
  77. 77.
    Molenda, M., Montross, M.D., Horabik, J.: Non-axial stress state in a model silo generated by eccentric filling and internal inserts. Particle and Particle Systems Characterization 24(4-5), 291–295 (2007)Google Scholar
  78. 78.
    Moriyama, R., Jimbo, G.: Reduction of pulsating wall pressure near the transition point in a bin. Bulk Solid Handling 8, 421–425 (1988)Google Scholar
  79. 79.
    Munch-Andersen, J.: Scale errors in model silo tests. In: Proc. 2nd Int. Conf. on Design of Silos for Strength and Flow, Stratford-upon-Avon, UK, pp. 230–241 (1983)Google Scholar
  80. 80.
    Munch-Andersen, J., Nielsen, J.: Size effects in slender grain silos. Bulk Solids Handling 6(5), 885–889 (1986)Google Scholar
  81. 81.
    Mühlhaus, H.B., Chin Hsin, L., Hornby, P.: Solid-Fluid Transition in Granular Flow: Constitutive and Computational Aspects. In: Felsmechanik Kolloquium, University Karlsruhe (1995)Google Scholar
  82. 82.
    Muite, B.K., Quinn, F.S., Sundaresan, S., Rao, K.K.: Silo music and silo quake: granular flow-induced vibration. Powder Technology 145, 190–202 (2004)Google Scholar
  83. 83.
    Nasuno, S., Kudrolli, A., Bak, A., Gollub, J.P.: Time-resolved studies of stickslip friction in sheared granular layers. Physical Review Letters 58(2), 2161–2166 (1998)Google Scholar
  84. 84.
    Nedderman, R.M., Laohakul, H.: The thickness of the shear zone of flowing granular materials. Powder Technology 25, 91–100 (1980)Google Scholar
  85. 85.
    Negi, S.C., Jofriet, J.C., Lu, Z.A.: A coupled discrete element-finite element model for simulation of bulk solids flow in bins. Powder Handling and Processing 11(4), 407–410 (1999)Google Scholar
  86. 86.
    Niedostatkiewicz, M., Tejchman, J.: Experimental and theoretical studies on resonance dynamic effects during silo flow. Powder Handling and Processing 15(1), 36–42 (2003)Google Scholar
  87. 87.
    Niedostatkiewicz, M., Tejchman, J.: Reduction of dynamic effects during granular flow in silos. Bulk Solids & Powder Science and Technology Journal 3(1) (2008)Google Scholar
  88. 88.
    Niedostatkiewicz, M., Tejchman, J., Chaniecki, Z., Grudzień, K.: Determination of bulk solid concentration changes during granular flow in a silo with ECT sensors. Chemical Engineering Science 64, 20–30 (2009)Google Scholar
  89. 89.
    Niedostatkiewicz, M., Grudzień, K., Chaniecki, Z., Tejchman, J.: Application of ECT to solid concentration measurements during granular flow in a rectangular model silo. Chemical Engineering Research and Design (2010), doi:10.1016/j.cherd.2010.01.034Google Scholar
  90. 90.
    Nielsen, J., Ruckenbrod, C.: A note on dynamic phenomena in silos. In: Proc. Int. Conf.: Silos – Forschung und Praxis, Karlsruhe, pp. 191–209 (1988)Google Scholar
  91. 91.
    Nothdurft, H.: Schuttgutlasten in Silozellen mit Querschnittsvergengungen. PhD Thesis, Techn. University of Braunschweig, Germany (1976)Google Scholar
  92. 92.
    Oger, L., Savage, S.B., Sayed, M.: Granular flow using particle-in cell approach. In: Proc. 4th Euromech Conf., Metz, p. 126 (2000)Google Scholar
  93. 93.
    Parisi, D.R., Masson, S., Martinez, J.: Partitioned distinct element method simulation of granular flow within industrial silos. Journal of Engineering Mechanics ASCE 130(7), 771–779 (2004)Google Scholar
  94. 94.
    Pariseau, W.G.: Discontinous velocity fields in gravity flow of granular materials through slots. Powder Technology 3, 218–225 (1970)Google Scholar
  95. 95.
    Persson, B.N.J.: Sliding Friction. Institut für Fesrkörperforschung, Jülich (1996)Google Scholar
  96. 96.
    Philips, C.E.S.: Electrical and other properties of sand. Proc. R. Inst. G. B. 19, 742 (1910)Google Scholar
  97. 97.
    Pieper, K.: Űber das Schlagen in Silozellen. Aufbereitungstechnik 4, 190–193 (1973)Google Scholar
  98. 98.
    Pouliquen, O., Cassar, C., Forterre, Y., Jop, P., Nicolas, M.: How do grains flow: towards a simple rheology to dense granular flows. In: Garcia-Rojo, R., Herrmann, H.J., McNamara, S. (eds.) Powders and Grains 2005, pp. 859–865. Taylor and Francis Group (2005)Google Scholar
  99. 99.
    Ragneau, E., Aribert, J.M.: General recurrent determination of grain action along silo walls during filling, transient flow and permanent emptying. In: Proc. of the 3rd European Symposium on Storage and Flow of Particulate Solids, PARTEC 1995, Nürnberg, pp. 205–219 (1995)Google Scholar
  100. 100.
    Rappen, A., Wright, H.: Der Einsatz von Luftkanonen zur Beseitigung von Fliessproblemen in Bunkers. VSR Produktionsübersicht, 2–10 (1985)Google Scholar
  101. 101.
    Renner, M.: Theoretische und experimentelle Untersuchungen zum schnellen Flies-sen von Schüttgütern in konvergenten Geometrien. PhD Thesis, Karlsruhe University (1996)Google Scholar
  102. 102.
    Ristow, G.H.: Outflow rates and stresses in 3D hoppers. In: Behringer, Jenkins (eds.) Powders and Grains, pp. 527–530. Rotterdam, Balkema (1997)Google Scholar
  103. 103.
    Roberts, A.W.: Shock loads in silos due to flow pulsations. In: Proc. Int. Conf. PARTEC 1995, Nürnberg, pp. 131–141 (1995)Google Scholar
  104. 104.
    Rombach, R.: Schűttguteinwirkungen auf Silozellen. PhD Thesis, University of Karlsruhe (1991)Google Scholar
  105. 105.
    Ruckenbrod, C., Eibl, J.: Dynamic Phenomena in Discharging Silos. In: Proc. of the 3rd European Symposium on Storage and Flow of Particulate Solids, PARTEC 1995, Nürnberg, Germany, pp. 193–202 (1995)Google Scholar
  106. 106.
    Ruckenbrod, C.: Statische und dynamische Phänomene bei der Entleerung von Silozellen. PhD Thesis, Karlsruhe University (1995)Google Scholar
  107. 107.
    Runesson, K., Nilsson, L.: Finite element modelling of the gravitational flow of a granular material. Int. J. Bulk Solids Handling 6, 877–884 (1986)Google Scholar
  108. 108.
    Safarian, S.S., Harris, E.C.: Design and construction of silos and bunkers. Van Nostrand Reinhold Company (1985)Google Scholar
  109. 109.
    Savage, S.B., McKeown, S.: Shear stresses developed during rapid shear of concentrated suspensions of large spherical particles between concentrated cylinders. J. Fluid Mech. 127, 453–472 (1983)Google Scholar
  110. 110.
    Scholz, V.: Untersuchungen zur Anordnung starrer koaxial Einbauten in Schüttgut-behaltern. PhD Thesis, Wilhem-Pieck-Universitat Rostock (1988)Google Scholar
  111. 111.
    Schulze, D.: Silo quaking. In: Brown, C.J., Nielsen, J. (eds.) Silos – Fundamentals and Theory, Behaviour and Design, pp. 171–182. EFN Spon (1998)Google Scholar
  112. 112.
    Slominski, C., Niedostatkiewicz, M., Tejchman, J.: Application of particle image velocimetry (PIV) for deformation measurement during granular silo flow. Powder Technology 173(1), 1–18 (2007)Google Scholar
  113. 113.
    Stadler, R., Buggisch, H.W.: Influence of the deformation rate on shear stresses in bulk solids – theoretical aspects and experimental results. In: Proc. Conf. Reliable Flow of Particulate Solids, Bergen. EFCE Pub. Series 49 (1985)Google Scholar
  114. 114.
    Stashevskii, S.B.: Stresses in the neighbourhoods of defects in bunker walls. Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh 5, 29–37 (1982)Google Scholar
  115. 115.
    Strusch, J.: Wandnormalspannungen in einem Silo mit Einbau und Kräfte auf Einbau-ten. PhD Thesis, Technische Universität Braunschweig, Germany (1996)Google Scholar
  116. 116.
    Strusch, J., Schwedes, J.: Silos with inserts – wall normal stresses and forces on inserts. ZKG International 49(12) (1996)Google Scholar
  117. 117.
    Sulsky, D., Chen, Z., Schreyer, H.L.: A particle method for history-dependent materials. Comp. Methods Appl. Mech. Engrg. 118, 179–196 (1994)MathSciNetzbMATHGoogle Scholar
  118. 118.
    Sykut, J., Molenda, M., Horabik, J.: DEM simulation of the packing structure and wall load in a 2-dimensional silo. Granular Matter (2008)Google Scholar
  119. 119.
    Takhashi, H., Yanai, H.: The profile and void fraction of granular solids in a moving bed. Powder Technology, 205–214 (1973)Google Scholar
  120. 120.
    Tejchman, J.: Dynamic phenomena in model silos. Int. Report of Institute for Rock and Soil Mechnics, Karlsruhe University (1987)Google Scholar
  121. 121.
    Tejchman, J.: Scherzonenbildung und Verspannungseffekte in Granulaten unter Berücksichtigung von Korndrehungen. Veröffentlichungen des Institutes für Boden- und Felsmechanik, Universität Karlsruhe 117, 1–236 (1989)Google Scholar
  122. 122.
    Tejchman, J., Gudehus, G.: Silo-music and silo-quake, experiments and a numerical Cosserat approach. Powder Technology 76(2), 201–212 (1993)Google Scholar
  123. 123.
    Tejchman, J., Wu, W.: Experimental and numerical study of sand-steel interfaces. International Journal of Numerical and Anal. Methods in Geomechanics 19(8), 513–537 (1995)Google Scholar
  124. 124.
    Tejchman, J.: Shear localisation and autogeneous dynamic effects in granular bodies. Publication Series of the Institute for Rock and Soil Mechanics, vol. 140, pp. 1–353. Karlsruhe University (1997)Google Scholar
  125. 125.
    Tejchman, J.: Silo-quake – measurements, a numerical polar approach and a way for its suppression. Thin-Walled Structures 31(1-3), 137–158 (1998)Google Scholar
  126. 126.
    Tejchman, J.: Technical concept to prevent the silo honking. Powder Technology 106, 7–22 (1999)Google Scholar
  127. 127.
    Tejchman, J., Gudehus, G.: Verspannung, Scherfugenbildung und Selbsterregung bei der Siloentleerung. In: Eibl, J., Gudehus, G. (eds.) Silobauwerke und ihre Spezifischen Beanspruchungen. Deutsche Forschungsgemeinschaft, pp. 245–284. Wiley-VCH (2000)Google Scholar
  128. 128.
    Tejchman, J., Klisinski, M.: FE-studies on rapid flow of bulk solids in silos. Granular Matter 3(4), 215–231 (2001)Google Scholar
  129. 129.
    Tejchman, J.: FE modeling of shear localization in granular bodies with micropolar hypoplasticity. In: Wu, W., Borja, R.I. (eds.) Springer Series in Geomechanics and Geoengineering. Springer, Heidelberg (2008)Google Scholar
  130. 130.
    Tejchman, J., Wu, W.: FE-investigations of shear localization in granular bodies under high shear rate. Granular Matter 11(2), 115–128 (2009)zbMATHGoogle Scholar
  131. 131.
    Thompson, P.A., Grest, G.S.: Granular Flow: friction and dilatancy transition. Physical Review Letters 67(13), 1751–1754 (1991)Google Scholar
  132. 132.
    Tillemans, H.-J., Herrmann, H.J.: Simulating deformations of granular solids under shear. Physica A 217, 261–288 (1995)Google Scholar
  133. 133.
    Tüzün, U., Neddermann, R.M.: Flow of granular materials round obstacles. Bulk Solids Handling 3, 507–517 (1983)Google Scholar
  134. 134.
    Thompson, P.A., Grest, G.S.: Granular Flow: friction and dilatancy transition. Physical Review Letters 67(13), 1751–1754 (1991)Google Scholar
  135. 135.
    Uesugi, M., Kishida, H., Tsubakihara, Y.: Behaviour of sand particles in sand-steel friction. Soils and Foundations 28(1), 107–118 (1988)Google Scholar
  136. 136.
    Vardoulakis, I.: Shear band inclination and shear modulus in biaxial tests. Int. J. Num. Anal. Meth. Geomech. 4, 103–119 (1980)zbMATHGoogle Scholar
  137. 137.
    Vardoulakis, I., Goldschneider, M., Gudehus, G.: Formation of shear bands in sand bodies as a bifurcation problem. International Journal of Numerical and Anal. Methods in Geomechanics 2, 99–128 (1995)Google Scholar
  138. 138.
    Vedaie, B., Bishara, A.G.: Pressures in circular hopper silos under axisymmetric mass flow. In: Intern Conf. Silos – Forschung und Praxis, Karlsruhe, SFB 219, pp. 25–55 (1988)Google Scholar
  139. 139.
    Wensrich, C.: Experimental behaviour of quaking in tall silos. Powder Technology 127, 87–94 (2002)Google Scholar
  140. 140.
    Więckowski, Z.: A particle-in-cell method in analysis of motion of a granular material in a silo. In: Idelsohn, S., Onate, E., Dworkin, E. (eds.) Computational Mechanics, pp. 1–20. CIMNE, Barcelona (1998)Google Scholar
  141. 141.
    Wieckowski, Z., Youn, S.K., Yeon, J.H.: A particle-in-cell solution to the silo discharging problem. Int. J. Num. Meths. in Engng. 45, 1203–1225 (1999)zbMATHGoogle Scholar
  142. 142.
    Więckowski, Z.: The dynamic analysis of large strain problems by the material point. In: Proc. of the Fifth World Congress on Computational Mechanics (WCCM V), Vienna, Austria, July 7-12 (2002)Google Scholar
  143. 143.
    Więckowski, Z.: The material point method in large strain engineering problems. Comput. Meth. in Appl. Mech. Eng. 193, 4417–4438 (2004)zbMATHGoogle Scholar
  144. 144.
    Wilde, K., Rucka, M., Tejchman, J.: Silo music – mechanism of dynamic flow and structure interaction. Powder Technology 186, 113–129 (2008)Google Scholar
  145. 145.
    Wilde, K., Tejchman, J., Rucka, M., Niedostatkiewicz, M.: Experimental and theoretical investigations of silo music. Powder Technology 198(1), 38–48 (2010)Google Scholar
  146. 146.
    Wójcik, M., Tejchman, J.: Numerical simulations of granular material flow in silos with and without insert. Archives of Civil Engineering LIII(2), 293–322 (2007)Google Scholar
  147. 147.
    Wójcik, M., Härtl, J., Ooi, J.Y., Rotter, J.M., Ding, S., Enstad, G.G.: Experimental investigation of flow pattern and wall pressure distribution in a silo with double-cone insert. Particle & Particle System Characterization 24(4-5), 296–303 (2007)Google Scholar
  148. 148.
    Yang, S.C., Hsiau, S.S.: The simulation and experimental study of granular materials discharged from a silo with the placement of inserts. Powder Technology 120(3), 244–255 (2001)Google Scholar
  149. 149.
    Yang, Y., Ooi, J., Rotter, M., Wang, Y.: Numerical analysis of silo behaviour using non-coaxial models. Chemical Engineering Science 66, 1715–1727 (2011)Google Scholar
  150. 150.
    Yoshida, T., Tatsuoka, F., Siddiquee, M.S.: Shear banding in sands observed in plane strain compression. In: Chambon, R., Desrues, J., Vardoulakis, I. (eds.) Localization and Bifurcation Theory for Soils and Rocks, pp. 165–181. Rotterdam, Balkema (1994)Google Scholar
  151. 151.
    Zhu, H., Mehrabadi, M.M., Massoudi, M.: The frictional flow of a dense granular material based on the dilatant double shearing model. Computers and Mathematics with Applications 53, 244–259 (2007)MathSciNetzbMATHGoogle Scholar
  152. 152.
    Yang, S.C., Hsiau, S.S.: The simulation and experimental study of granular materials discharged from a silo with the placement of inserts. Powder Technology 120(3), 244–255 (2001)Google Scholar
  153. 153.
    Yang, Y., Ooi, J., Rotter, M., Wang, Y.: Numerical analysis of silo behaviour using non-coaxial models. Chemical Engineering Science 66, 1715–1727 (2011)Google Scholar
  154. 154.
    Yoshida, T., Tatsuoka, F., Siddiquee, M.S.: Shear banding in sands observed in plane strain compression. In: Chambon, R., Desrues, J., Vardoulakis, I. (eds.) Localization and Bifurcation Theory for Soils and Rocks, pp. 165–181. Rotterdam, Balkema (1994)Google Scholar
  155. 155.
    Zhu, H., Mehrabadi, M.M., Massoudi, M.: The frictional flow of a dense granular material based on the dilatant double shearing model. Computers and Mathematics with Applications 53, 244–259 (2007)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Faculty of Civil and Environmental EngineeringGdansk University of TechnologyGdansk-WrzeszczPoland

Personalised recommendations