Skip to main content

Literature Overview

  • Chapter

Part of the book series: Springer Series in Geomechanics and Geoengineering ((SSGG))

Abstract

In this Chapter, the literature overview is given with respect to numerical models describing silo flow, shear zone formation during flow, coupled dynamic-acoustic effects and silo inserts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn, H.: Computer simulation of rapid granular flow through an orifice. J. of Applied Mechanics 74, 111–118 (2007)

    MATH  Google Scholar 

  2. Alshibli, K.A., Sture, S.: Shear band formation in plane strain experiments of sand. Journal of Geotechnical and Geoenvironmental Engineering ASCE 126(6), 495–503 (2000)

    Google Scholar 

  3. Ananda, K.S., Sudheshna, M., Prabhu, R.N.: Kinematics and statistics of dense, slow granular flow through vertical channels. J. Fluid Mech. 610, 69–97 (2008)

    MATH  Google Scholar 

  4. Andreotti, B.: Sonic sands. Rep. Prog. Phys. 75, 026602 (2012)

    Google Scholar 

  5. Antonowicz, R.: Effect of geometric parameters of reducing devices on flow pattern and load distribution in silos with large diameters. PhD Thesis, Wrocław Univer-sity of Technology (2004) (in polish)

    Google Scholar 

  6. Bagnold, R.A.: Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. London A 225, 49–63 (1954)

    Google Scholar 

  7. Baxter, G.W., Behringer, R.P.: Pattern formation and time-dependence in flowing sand. In: Two-Phase Flows and Waves, pp. 1–19. Springer (1990)

    Google Scholar 

  8. Benink, E.: Flow and stress analysis of cohesionless bulk materials in silos related to codes. PhD Thesis, University of Twente, Enschede (1989)

    Google Scholar 

  9. Bonneau, L., Catelin-Jullien, T., Andreotti, B.: Friction-induced amplification of acous-tic waves in a low Mach number granular flow. Physical Review E 82, 011309-1–011309-10 (2010)

    Google Scholar 

  10. Böhrnsen, J.U., Antes, H.: Dynamic behaviour of granular materials during the silo discharge. In: Proc. Int. Symposium on Reliable Flow of Particulate Solids, Telemark College, Porsgrunn, pp. 665–675 (1999)

    Google Scholar 

  11. Böhrnsen, J.U., Antes, H., Ostendorf, M., Schwedes, J.: Silo discharge: measurement and simulation of dynamic behavior in bulk solids. Chem. Eng. Technol. 27, 71–76 (2004)

    Google Scholar 

  12. Börzsönyi, T., Kovács, Z.: High-speed imaging of travelling waves in a granular material during silo discharge. Phys. Rev. E 83, 032301-1–032301-4 (2011)

    Google Scholar 

  13. Bransby, P.L., Blair-Fish, P.M., James, R.G.: An investigation of the flow of granular materials. Powder Technology, 197–206 (1973)

    Google Scholar 

  14. Bucklin, R.A., Molenda, M., Bridges, I.J.: Slip-stick frictional behavior of wheat on galvanized steel. Trans. of the ASAE 39(2), 649–653 (1996)

    Google Scholar 

  15. Buick, J.M., Pankai, Y., Ooi, J.Y., Chavez-Sagarnaga, J., Pearce, A., Houghton, G.: Motion of granular particles on the wall of a model silo and the associated wall vibrations. J. Phys. D: Appl. Phys. 37, 2751–2760 (2004)

    Google Scholar 

  16. Buick, J.M., Chavez-Sagarnaga, J., Zhing, Z., Ooi, J.Y., Pankaj, D., Cambell, C.A.: Greated. Investigation of silo-honking: slip-stick excitation and wall vibration. Journal of Engineering Mechanics ASCE 131(3), 299–307 (2005)

    Google Scholar 

  17. Cutress, J.O., Pulfer, R.F.: X-ray investigations of flowing powders. Powder Technology 1, 213–220 (1967)

    Google Scholar 

  18. Desrues, J., Chambon, R., Mokni, M., Mazerolle, F.: Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography. Géotechnique 46(3), 529–546 (1996)

    Google Scholar 

  19. Dhoriyani, M.L., Jonnalagadda, K.K., Kandikatla, R.K., Rao, K.K.: Silo music: sound emission during the flow of granular materials through tubes. Powder Technology 167, 55–71 (2006)

    Google Scholar 

  20. Drescher, A., Cousens, T.W., Bransby, P.L.: Kinematics of the mass flow of granular material through a plane hopper. Geotechnique 28(1), 27–42 (1978)

    Google Scholar 

  21. Drescher, A.: On the criteria for mass flow in hoppers. Powder Technology 73, 251–260 (1992)

    Google Scholar 

  22. Drescher, A.: Some aspects of flow of granular materials in hoppers. Philosophical Transactions, Royal Society of London 356, 2649–2666 (1998)

    MATH  Google Scholar 

  23. Dufour, F.: Particle in cell formulation for large deformation in Cosserat continua. Lecture. In: Lecture, International Workshop on Bifurcation and Localisation in Geomechanics, The University of Western Australia, Perth (1999)

    Google Scholar 

  24. Eibl, J., Rombach, G.: Consistent Modelling of Filling and Discharging Processes in Silos. In: Intern. Conf. Silos-Forschung und Praxis, SFB 219, pp. 1–15. Universität Karlsruhe (1998)

    Google Scholar 

  25. Elaskar, S.A., Godoy, L.A., Gray, D.D., Stiles, J.M.: A viscoplastic approach to model the flow of granular solids. International Journal of Solids and Structures 37, 2185–2214 (2000)

    MATH  Google Scholar 

  26. Enstad, G.G.: Investigation of the use of insert in order to obtain Mass Flow in Silos. POSTEC-Newsletter No. 15, 13–16 (1996)

    Google Scholar 

  27. Enstad, G.G.: Further investigation of the use of insert in order to obtain mass flow in silos. POSTEC-Newsleter No. 16, 15–18 (1997)

    Google Scholar 

  28. Enstad, G.G.: Use of inverted cones and double cones as inserts for obtaining mass flow. POSTEC-Newsleter No. 17, 15–16 (1998)

    Google Scholar 

  29. Feras, Y., Fraige, F.Y., Langston, P.A., Matchett, A.J., Dodds, J.: Vibration induced flow in hoppers: DEM 2D polygon model. Particuology 6(6), 455–466 (2008)

    Google Scholar 

  30. Finno, R.J., Harris, W., Mooney, M., Viggiani, G.: Strain localization and undrained steady state of sand. Journal of Geotechnical Engineering ASCE 122(6), 462–473 (1996)

    Google Scholar 

  31. Fütterer, G.: Untersuchungen zum schnellen Fließen von trockenen, kohäsionslosen Schüttgütern in konvergenten Schächten. PhD Thesis, Karlsruhe University, pp. 1–140 (1991)

    Google Scholar 

  32. GDR MiDi: On dense granular flows. J. Eur. Phys. E 14, 341–365 (2004)

    Google Scholar 

  33. Godoy, L.A., Elaskar, S.A.: Wall pressures in cylindrical silos with geometric distortions during gravity discharge. Powder Handling and Processing 11(4), 407–410 (1999)

    Google Scholar 

  34. Grudzień, K., Niedostatkiewicz, M., Adrien, J., Tejchman, J., Maire, E.: Quantitative estimation of volume changes of granular materials during silo flow using X-ray tomography. Chemical Engineering and Processing: Process Intensification 50, 59–67 (2011)

    Google Scholar 

  35. Gudehus, G., Tejchman, J.: Some mechanisms of a granular mass in a silo – model tests and a numerical Cosserat approach. In: Brüller, O., Mannel, V., Najar, J. (eds.) Advances in Continuum Mechanics, dedicated to H. Lippmann, pp. 178–193. Springer, Heidelberg (1991)

    Google Scholar 

  36. Gutfraind, R., Pouliquen, O.: Study of the origin of shear zones in quasi-static vertical chute flows by using discrete particle simulations. Mechanics of Materials 24, 273–285 (1996)

    Google Scholar 

  37. Haff, P.K.: Grain flow as a fluid – mechanical phenomenon. J. Fluid Mech. 134, 401–430 (1983)

    MATH  Google Scholar 

  38. Hanes, D.M., Inman, D.I.: Observations of rapidly flowing granular-fluid materials. J. Fluid Mech. 150, 357–380 (1985)

    Google Scholar 

  39. Hardow, B., Schulze, D., Schwedes, J.: An experimental analysis of the silo quaking phenomenon. In: Proc. 3rd World Congress on Particle Technology, Brighton, England (1998)

    Google Scholar 

  40. Hatamura, Y., Takeuchi, T.: Analysis of physical phenomena in silos. In: Biarez, J., Gourves, R. (eds.) Int. Conf. Powders and Grains, pp. 445–452. Rotterdam, Balkema (1989)

    Google Scholar 

  41. Härtl, J., Ooi, J.Y., Rotter, J., Wójcik, M., Ding, S., Enstad, G.G.: The influence of a cone-in-cone insert on flow pattern and wall pressure in a full-scale silo. Chemical Engineering Research and Design 86, 370–378 (2008)

    Google Scholar 

  42. Häußler, U., Eibl, J.: Numerical investigation of discharging silos. J. Engineering Mechanics 110, 957–971 (1984)

    Google Scholar 

  43. Hirshfeld, D., Rapaport, D.C.: Granular flow from a silo: discrete-particle simulations in three dimensions. Eur. Phys. J. E. 4, 193–199 (2001)

    Google Scholar 

  44. Hsiau, S.S., Smid, J., Tsai, S.A., Tzeng, C.C., Yu, Y.J.: Flow of filter granules in moving granular beds with louvers and sublouvers. Chemical Engineering and Processing 47, 2084–2097 (2008)

    Google Scholar 

  45. Hungr, O., Morgenstern, N.R.: Experiments on the flow behaviour of granular materials at high velocity in an open channel. Geotechnique 34(3), 405–413 (1984)

    Google Scholar 

  46. Ichiba, K., Iwashita, K., Oda, M.: Experimental study on stress ratio in rapid granular shear flow. In: Garcia-Rojo, R., Herrmann, H.J., McNamara, S. (eds.) Powders and Grains 2005, pp. 751–755. Taylor and Francis Group (2005)

    Google Scholar 

  47. Jaeger, H.M., Nagel, S.R., Behringer, R.P.: Granular solids, liquids and gases. Reviews of Modern Physics 68(4), 1259–1273 (1996)

    Google Scholar 

  48. Jenike, A.W.: Storage and Flow of Solids. Bulletin No. 123 of the Utah Engineering Experiment Station, University of Utah 53(26), 197 (1964)

    Google Scholar 

  49. Jenkins, J.T., Savage, S.B.: A theory for the rapid flow of identical, smooth, nearly elastic spherical particles. J. Fluid Mech. 130, 197–202 (1983)

    Google Scholar 

  50. Jenkins, J.T.: Boundary conditions for rapid granular flow: flat, frictional walls. Journal of Applied Mechanics 59, 120–127 (1992)

    MATH  Google Scholar 

  51. Johanson, J.R., Kleysteuber, W.K.: Flow corrective inserts in bins. Chemical Engineering Progress 62(11), 79–83 (1966)

    Google Scholar 

  52. Johanson, J.R.: The placement of inserts to correct flow in bins. Powder Technology 1, 328–333 (1967)

    Google Scholar 

  53. Johanson, J.R.: Controlling flow patterns in bins by use of inserts. Bulk Solid Handling 2(3), 495–498 (1982)

    MathSciNet  Google Scholar 

  54. Johanson, K.: Predicting cone-in-cone blender efficiencies from key material properties. Powder Technology 170(3), 109–124 (2006)

    Google Scholar 

  55. Jop, P., Forterre, Y., Pouliquen, O.: A constitutive law for dense granular flows. Nature 441, 727 (2006)

    Google Scholar 

  56. Kafui, K.D., Thornton, C.: Some observations on granular flow in hoppers and silos. In: Behringer, Jenkins (eds.) Powders and Grains, pp. 511–514. Rotterdam, Balkema (1997)

    Google Scholar 

  57. Kaitna, R., Rickenmann, D., Schatzmann, M.: Experimental study on rheologic behaviour of debris flow material. Acta Geotechnica 2, 71–85 (2007)

    Google Scholar 

  58. Kaminski, M., Zubrzycki, M.: Reduzieren des dynamischen Horizontaldruckes in Getreidesilos. Bauingenieur, 313–318 (1985)

    Google Scholar 

  59. Kaminski, M., Antonowicz, R.: The flow of rape seed in silo equipped with a discharge device. Task Quarterly 7(4), 561–569 (2003)

    Google Scholar 

  60. Karlsson, T., Klisiński, M., Runesson, K.: Finite element simulations of granular flow in plane silos with complicated geometry. Powder Technology 99, 29–39 (1998)

    Google Scholar 

  61. Kobielak, S., Zamorski, A.: Redistribution of grain pressure in silos with inserts. In: The Third Israeli Conference for Conveing and Handling of Particular Solids, Israel (2000)

    Google Scholar 

  62. Lade, P.V.: Instability, shear banding and failure in granular materials. International of Solids and Structures 39, 3337–3357 (2002)

    Google Scholar 

  63. Lambe, T.W., Whitman, R.V.: Soil Mechanics. Wiley & Sons (1969)

    Google Scholar 

  64. Langston, P.A., Heyes, D.M., Tüzün, U.: Discrete Element Simulation of Granular Flow in Hoppers. In: Proc. of the 3rd European Symposium on Storage and Flow of Particulate Solids, PARTEC 1995, Nürnberg, Germany, pp. 357–367 (1995)

    Google Scholar 

  65. Leppert, C., Dinkler, D.: A viscous model for free surface granular flow in silos. In: Garcia-Rojo, R., Herrmann, H.J., McNamara, S. (eds.) Powders and Grains 2005, pp. 461–464. Taylor and Francis Group (2005)

    Google Scholar 

  66. Lia, J.T., Langston, P.A., Webb, C., Dyakowski, T.: Flow of sphero-disc particles in rectangular hoppers – a DEM and experimental comparison in 3D. Chemical Engineering Science 59(24), 5917–5929 (2004)

    Google Scholar 

  67. Löffelmann, F.: Theoretische und experimentelle Untersuchungen zur Schüttgut-Wand-Wechselwirkung und zum Mischen und Entimischen von Granulaten. PhD Thesis, Karlsruhe University (1989)

    Google Scholar 

  68. Luding, S., Duran, J., Clement, E., Rejchenbach, J.: Computer simulations and experiments of dry granular media: polydisperse disks in a vertical pipe. In: Proc. 5th World Congress of Chemical Engineering, San Diego, vol. 5, pp. 325–330 (1996)

    Google Scholar 

  69. Lun, C.K.K., Savage, S.B.: A simple kinetic theory for granular flow of rough, inelastic spherical particle. J. Appl. Mech. 54, 47–53 (1987)

    MATH  Google Scholar 

  70. Markauskas, D., Kacianauskas, R.: Investigation of rice grain flow by multisphere particle model with rolling resistance. Granular Matter (2010), doi:10.1007/s10035-010-0196-5

    Google Scholar 

  71. Martinez, J., Masson, S., Deserable, D.: Flow Patterns and Velocity Profiles during Silo Discharge Simulation with a Lattice Grain Model. In: Proc. of the 3rd European Symposium Storage and Flow of Particulate Solids, PARTEC 1995, Nürnberg, Germany, pp. 367–379 (1995)

    Google Scholar 

  72. McCabe, R.P.: Flow patterns in granular materials in circular silos. Geotechnique 1, 45–62 (1974)

    Google Scholar 

  73. Mehrafza, M.: Entleerungsdrücke in Massefluss-Silos. PhD Thesis, Karlsruhe University, pp. 1–280 (2000)

    Google Scholar 

  74. Michalowski, R.L.: Flow of granular material through a plane hopper. Powder Technology 39, 29–40 (1984)

    Google Scholar 

  75. Michalowski, R.L.: Strain localization and periodic fluctuations in granular flow processes from hoppers. Geotechnique 40(3), 389–403 (1990)

    Google Scholar 

  76. Mohan, L.S., Nott, P.R., Rao, K.K.: A frictional Cosserat model for the flow of granular materials through a vertical channel. J. Fluid Mech. 457, 377–409 (2002)

    MathSciNet  MATH  Google Scholar 

  77. Molenda, M., Montross, M.D., Horabik, J.: Non-axial stress state in a model silo generated by eccentric filling and internal inserts. Particle and Particle Systems Characterization 24(4-5), 291–295 (2007)

    Google Scholar 

  78. Moriyama, R., Jimbo, G.: Reduction of pulsating wall pressure near the transition point in a bin. Bulk Solid Handling 8, 421–425 (1988)

    Google Scholar 

  79. Munch-Andersen, J.: Scale errors in model silo tests. In: Proc. 2nd Int. Conf. on Design of Silos for Strength and Flow, Stratford-upon-Avon, UK, pp. 230–241 (1983)

    Google Scholar 

  80. Munch-Andersen, J., Nielsen, J.: Size effects in slender grain silos. Bulk Solids Handling 6(5), 885–889 (1986)

    Google Scholar 

  81. Mühlhaus, H.B., Chin Hsin, L., Hornby, P.: Solid-Fluid Transition in Granular Flow: Constitutive and Computational Aspects. In: Felsmechanik Kolloquium, University Karlsruhe (1995)

    Google Scholar 

  82. Muite, B.K., Quinn, F.S., Sundaresan, S., Rao, K.K.: Silo music and silo quake: granular flow-induced vibration. Powder Technology 145, 190–202 (2004)

    Google Scholar 

  83. Nasuno, S., Kudrolli, A., Bak, A., Gollub, J.P.: Time-resolved studies of stickslip friction in sheared granular layers. Physical Review Letters 58(2), 2161–2166 (1998)

    Google Scholar 

  84. Nedderman, R.M., Laohakul, H.: The thickness of the shear zone of flowing granular materials. Powder Technology 25, 91–100 (1980)

    Google Scholar 

  85. Negi, S.C., Jofriet, J.C., Lu, Z.A.: A coupled discrete element-finite element model for simulation of bulk solids flow in bins. Powder Handling and Processing 11(4), 407–410 (1999)

    Google Scholar 

  86. Niedostatkiewicz, M., Tejchman, J.: Experimental and theoretical studies on resonance dynamic effects during silo flow. Powder Handling and Processing 15(1), 36–42 (2003)

    Google Scholar 

  87. Niedostatkiewicz, M., Tejchman, J.: Reduction of dynamic effects during granular flow in silos. Bulk Solids & Powder Science and Technology Journal 3(1) (2008)

    Google Scholar 

  88. Niedostatkiewicz, M., Tejchman, J., Chaniecki, Z., Grudzień, K.: Determination of bulk solid concentration changes during granular flow in a silo with ECT sensors. Chemical Engineering Science 64, 20–30 (2009)

    Google Scholar 

  89. Niedostatkiewicz, M., Grudzień, K., Chaniecki, Z., Tejchman, J.: Application of ECT to solid concentration measurements during granular flow in a rectangular model silo. Chemical Engineering Research and Design (2010), doi:10.1016/j.cherd.2010.01.034

    Google Scholar 

  90. Nielsen, J., Ruckenbrod, C.: A note on dynamic phenomena in silos. In: Proc. Int. Conf.: Silos – Forschung und Praxis, Karlsruhe, pp. 191–209 (1988)

    Google Scholar 

  91. Nothdurft, H.: Schuttgutlasten in Silozellen mit Querschnittsvergengungen. PhD Thesis, Techn. University of Braunschweig, Germany (1976)

    Google Scholar 

  92. Oger, L., Savage, S.B., Sayed, M.: Granular flow using particle-in cell approach. In: Proc. 4th Euromech Conf., Metz, p. 126 (2000)

    Google Scholar 

  93. Parisi, D.R., Masson, S., Martinez, J.: Partitioned distinct element method simulation of granular flow within industrial silos. Journal of Engineering Mechanics ASCE 130(7), 771–779 (2004)

    Google Scholar 

  94. Pariseau, W.G.: Discontinous velocity fields in gravity flow of granular materials through slots. Powder Technology 3, 218–225 (1970)

    Google Scholar 

  95. Persson, B.N.J.: Sliding Friction. Institut für Fesrkörperforschung, Jülich (1996)

    Google Scholar 

  96. Philips, C.E.S.: Electrical and other properties of sand. Proc. R. Inst. G. B. 19, 742 (1910)

    Google Scholar 

  97. Pieper, K.: Űber das Schlagen in Silozellen. Aufbereitungstechnik 4, 190–193 (1973)

    Google Scholar 

  98. Pouliquen, O., Cassar, C., Forterre, Y., Jop, P., Nicolas, M.: How do grains flow: towards a simple rheology to dense granular flows. In: Garcia-Rojo, R., Herrmann, H.J., McNamara, S. (eds.) Powders and Grains 2005, pp. 859–865. Taylor and Francis Group (2005)

    Google Scholar 

  99. Ragneau, E., Aribert, J.M.: General recurrent determination of grain action along silo walls during filling, transient flow and permanent emptying. In: Proc. of the 3rd European Symposium on Storage and Flow of Particulate Solids, PARTEC 1995, Nürnberg, pp. 205–219 (1995)

    Google Scholar 

  100. Rappen, A., Wright, H.: Der Einsatz von Luftkanonen zur Beseitigung von Fliessproblemen in Bunkers. VSR Produktionsübersicht, 2–10 (1985)

    Google Scholar 

  101. Renner, M.: Theoretische und experimentelle Untersuchungen zum schnellen Flies-sen von Schüttgütern in konvergenten Geometrien. PhD Thesis, Karlsruhe University (1996)

    Google Scholar 

  102. Ristow, G.H.: Outflow rates and stresses in 3D hoppers. In: Behringer, Jenkins (eds.) Powders and Grains, pp. 527–530. Rotterdam, Balkema (1997)

    Google Scholar 

  103. Roberts, A.W.: Shock loads in silos due to flow pulsations. In: Proc. Int. Conf. PARTEC 1995, Nürnberg, pp. 131–141 (1995)

    Google Scholar 

  104. Rombach, R.: Schűttguteinwirkungen auf Silozellen. PhD Thesis, University of Karlsruhe (1991)

    Google Scholar 

  105. Ruckenbrod, C., Eibl, J.: Dynamic Phenomena in Discharging Silos. In: Proc. of the 3rd European Symposium on Storage and Flow of Particulate Solids, PARTEC 1995, Nürnberg, Germany, pp. 193–202 (1995)

    Google Scholar 

  106. Ruckenbrod, C.: Statische und dynamische Phänomene bei der Entleerung von Silozellen. PhD Thesis, Karlsruhe University (1995)

    Google Scholar 

  107. Runesson, K., Nilsson, L.: Finite element modelling of the gravitational flow of a granular material. Int. J. Bulk Solids Handling 6, 877–884 (1986)

    Google Scholar 

  108. Safarian, S.S., Harris, E.C.: Design and construction of silos and bunkers. Van Nostrand Reinhold Company (1985)

    Google Scholar 

  109. Savage, S.B., McKeown, S.: Shear stresses developed during rapid shear of concentrated suspensions of large spherical particles between concentrated cylinders. J. Fluid Mech. 127, 453–472 (1983)

    Google Scholar 

  110. Scholz, V.: Untersuchungen zur Anordnung starrer koaxial Einbauten in Schüttgut-behaltern. PhD Thesis, Wilhem-Pieck-Universitat Rostock (1988)

    Google Scholar 

  111. Schulze, D.: Silo quaking. In: Brown, C.J., Nielsen, J. (eds.) Silos – Fundamentals and Theory, Behaviour and Design, pp. 171–182. EFN Spon (1998)

    Google Scholar 

  112. Slominski, C., Niedostatkiewicz, M., Tejchman, J.: Application of particle image velocimetry (PIV) for deformation measurement during granular silo flow. Powder Technology 173(1), 1–18 (2007)

    Google Scholar 

  113. Stadler, R., Buggisch, H.W.: Influence of the deformation rate on shear stresses in bulk solids – theoretical aspects and experimental results. In: Proc. Conf. Reliable Flow of Particulate Solids, Bergen. EFCE Pub. Series 49 (1985)

    Google Scholar 

  114. Stashevskii, S.B.: Stresses in the neighbourhoods of defects in bunker walls. Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh 5, 29–37 (1982)

    Google Scholar 

  115. Strusch, J.: Wandnormalspannungen in einem Silo mit Einbau und Kräfte auf Einbau-ten. PhD Thesis, Technische Universität Braunschweig, Germany (1996)

    Google Scholar 

  116. Strusch, J., Schwedes, J.: Silos with inserts – wall normal stresses and forces on inserts. ZKG International 49(12) (1996)

    Google Scholar 

  117. Sulsky, D., Chen, Z., Schreyer, H.L.: A particle method for history-dependent materials. Comp. Methods Appl. Mech. Engrg. 118, 179–196 (1994)

    MathSciNet  MATH  Google Scholar 

  118. Sykut, J., Molenda, M., Horabik, J.: DEM simulation of the packing structure and wall load in a 2-dimensional silo. Granular Matter (2008)

    Google Scholar 

  119. Takhashi, H., Yanai, H.: The profile and void fraction of granular solids in a moving bed. Powder Technology, 205–214 (1973)

    Google Scholar 

  120. Tejchman, J.: Dynamic phenomena in model silos. Int. Report of Institute for Rock and Soil Mechnics, Karlsruhe University (1987)

    Google Scholar 

  121. Tejchman, J.: Scherzonenbildung und Verspannungseffekte in Granulaten unter Berücksichtigung von Korndrehungen. Veröffentlichungen des Institutes für Boden- und Felsmechanik, Universität Karlsruhe 117, 1–236 (1989)

    Google Scholar 

  122. Tejchman, J., Gudehus, G.: Silo-music and silo-quake, experiments and a numerical Cosserat approach. Powder Technology 76(2), 201–212 (1993)

    Google Scholar 

  123. Tejchman, J., Wu, W.: Experimental and numerical study of sand-steel interfaces. International Journal of Numerical and Anal. Methods in Geomechanics 19(8), 513–537 (1995)

    Google Scholar 

  124. Tejchman, J.: Shear localisation and autogeneous dynamic effects in granular bodies. Publication Series of the Institute for Rock and Soil Mechanics, vol. 140, pp. 1–353. Karlsruhe University (1997)

    Google Scholar 

  125. Tejchman, J.: Silo-quake – measurements, a numerical polar approach and a way for its suppression. Thin-Walled Structures 31(1-3), 137–158 (1998)

    Google Scholar 

  126. Tejchman, J.: Technical concept to prevent the silo honking. Powder Technology 106, 7–22 (1999)

    Google Scholar 

  127. Tejchman, J., Gudehus, G.: Verspannung, Scherfugenbildung und Selbsterregung bei der Siloentleerung. In: Eibl, J., Gudehus, G. (eds.) Silobauwerke und ihre Spezifischen Beanspruchungen. Deutsche Forschungsgemeinschaft, pp. 245–284. Wiley-VCH (2000)

    Google Scholar 

  128. Tejchman, J., Klisinski, M.: FE-studies on rapid flow of bulk solids in silos. Granular Matter 3(4), 215–231 (2001)

    Google Scholar 

  129. Tejchman, J.: FE modeling of shear localization in granular bodies with micropolar hypoplasticity. In: Wu, W., Borja, R.I. (eds.) Springer Series in Geomechanics and Geoengineering. Springer, Heidelberg (2008)

    Google Scholar 

  130. Tejchman, J., Wu, W.: FE-investigations of shear localization in granular bodies under high shear rate. Granular Matter 11(2), 115–128 (2009)

    MATH  Google Scholar 

  131. Thompson, P.A., Grest, G.S.: Granular Flow: friction and dilatancy transition. Physical Review Letters 67(13), 1751–1754 (1991)

    Google Scholar 

  132. Tillemans, H.-J., Herrmann, H.J.: Simulating deformations of granular solids under shear. Physica A 217, 261–288 (1995)

    Google Scholar 

  133. Tüzün, U., Neddermann, R.M.: Flow of granular materials round obstacles. Bulk Solids Handling 3, 507–517 (1983)

    Google Scholar 

  134. Thompson, P.A., Grest, G.S.: Granular Flow: friction and dilatancy transition. Physical Review Letters 67(13), 1751–1754 (1991)

    Google Scholar 

  135. Uesugi, M., Kishida, H., Tsubakihara, Y.: Behaviour of sand particles in sand-steel friction. Soils and Foundations 28(1), 107–118 (1988)

    Google Scholar 

  136. Vardoulakis, I.: Shear band inclination and shear modulus in biaxial tests. Int. J. Num. Anal. Meth. Geomech. 4, 103–119 (1980)

    MATH  Google Scholar 

  137. Vardoulakis, I., Goldschneider, M., Gudehus, G.: Formation of shear bands in sand bodies as a bifurcation problem. International Journal of Numerical and Anal. Methods in Geomechanics 2, 99–128 (1995)

    Google Scholar 

  138. Vedaie, B., Bishara, A.G.: Pressures in circular hopper silos under axisymmetric mass flow. In: Intern Conf. Silos – Forschung und Praxis, Karlsruhe, SFB 219, pp. 25–55 (1988)

    Google Scholar 

  139. Wensrich, C.: Experimental behaviour of quaking in tall silos. Powder Technology 127, 87–94 (2002)

    Google Scholar 

  140. Więckowski, Z.: A particle-in-cell method in analysis of motion of a granular material in a silo. In: Idelsohn, S., Onate, E., Dworkin, E. (eds.) Computational Mechanics, pp. 1–20. CIMNE, Barcelona (1998)

    Google Scholar 

  141. Wieckowski, Z., Youn, S.K., Yeon, J.H.: A particle-in-cell solution to the silo discharging problem. Int. J. Num. Meths. in Engng. 45, 1203–1225 (1999)

    MATH  Google Scholar 

  142. Więckowski, Z.: The dynamic analysis of large strain problems by the material point. In: Proc. of the Fifth World Congress on Computational Mechanics (WCCM V), Vienna, Austria, July 7-12 (2002)

    Google Scholar 

  143. Więckowski, Z.: The material point method in large strain engineering problems. Comput. Meth. in Appl. Mech. Eng. 193, 4417–4438 (2004)

    MATH  Google Scholar 

  144. Wilde, K., Rucka, M., Tejchman, J.: Silo music – mechanism of dynamic flow and structure interaction. Powder Technology 186, 113–129 (2008)

    Google Scholar 

  145. Wilde, K., Tejchman, J., Rucka, M., Niedostatkiewicz, M.: Experimental and theoretical investigations of silo music. Powder Technology 198(1), 38–48 (2010)

    Google Scholar 

  146. Wójcik, M., Tejchman, J.: Numerical simulations of granular material flow in silos with and without insert. Archives of Civil Engineering LIII(2), 293–322 (2007)

    Google Scholar 

  147. Wójcik, M., Härtl, J., Ooi, J.Y., Rotter, J.M., Ding, S., Enstad, G.G.: Experimental investigation of flow pattern and wall pressure distribution in a silo with double-cone insert. Particle & Particle System Characterization 24(4-5), 296–303 (2007)

    Google Scholar 

  148. Yang, S.C., Hsiau, S.S.: The simulation and experimental study of granular materials discharged from a silo with the placement of inserts. Powder Technology 120(3), 244–255 (2001)

    Google Scholar 

  149. Yang, Y., Ooi, J., Rotter, M., Wang, Y.: Numerical analysis of silo behaviour using non-coaxial models. Chemical Engineering Science 66, 1715–1727 (2011)

    Google Scholar 

  150. Yoshida, T., Tatsuoka, F., Siddiquee, M.S.: Shear banding in sands observed in plane strain compression. In: Chambon, R., Desrues, J., Vardoulakis, I. (eds.) Localization and Bifurcation Theory for Soils and Rocks, pp. 165–181. Rotterdam, Balkema (1994)

    Google Scholar 

  151. Zhu, H., Mehrabadi, M.M., Massoudi, M.: The frictional flow of a dense granular material based on the dilatant double shearing model. Computers and Mathematics with Applications 53, 244–259 (2007)

    MathSciNet  MATH  Google Scholar 

  152. Yang, S.C., Hsiau, S.S.: The simulation and experimental study of granular materials discharged from a silo with the placement of inserts. Powder Technology 120(3), 244–255 (2001)

    Google Scholar 

  153. Yang, Y., Ooi, J., Rotter, M., Wang, Y.: Numerical analysis of silo behaviour using non-coaxial models. Chemical Engineering Science 66, 1715–1727 (2011)

    Google Scholar 

  154. Yoshida, T., Tatsuoka, F., Siddiquee, M.S.: Shear banding in sands observed in plane strain compression. In: Chambon, R., Desrues, J., Vardoulakis, I. (eds.) Localization and Bifurcation Theory for Soils and Rocks, pp. 165–181. Rotterdam, Balkema (1994)

    Google Scholar 

  155. Zhu, H., Mehrabadi, M.M., Massoudi, M.: The frictional flow of a dense granular material based on the dilatant double shearing model. Computers and Mathematics with Applications 53, 244–259 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Tejchman .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tejchman, J. (2013). Literature Overview. In: Confined Granular Flow in Silos. Springer Series in Geomechanics and Geoengineering. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00318-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00318-4_2

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00317-7

  • Online ISBN: 978-3-319-00318-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics