Skip to main content

Dye-Sensitised Solar Cell Based on a Three-Dimensional Photonic Crystal

  • Chapter
  • First Online:
Inorganic Nanoarchitectures by Organic Self-Assembly

Part of the book series: Springer Theses ((Springer Theses))

  • 811 Accesses

Abstract

The integration of optical elements that increase the photon path length in the light absorbing layer is a promising strategy to increase device efficiency of dye-sensitised solar cells (DSC). Device architectures that incorporate structural order in form of a three-dimensional photonic crystal can lead to the localization of light in specific parts of the spectrum, while retaining the cell’s transparency in others. In this chapter, a first successful route is presented that allowed the experimental realisation of a double layer electrode architecture, including a mesoporous TiO2 underlayer and a macroporous TiO2 inverse opal top layer. This construct enables effective dye sensitisation, electrolyte infiltration, and charge collection from both layers, opening up additional parameter space for effective light management by harvesting photonic crystal-induced resonances.

Published by Guldin et al. in Nano Letters [1] and in Proceedings of the SPIE [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • S. Guldin, S. Hüttner, M. Kolle, M. Welland, P. Müller-Buschbaum, R. Friend, U. Steiner, N. Tetreault, Dye-sensitized solar cell based on a three-dimensional photonic crystal. Nano Lett. 10(7), 2303–2309 (2010)

    Google Scholar 

  • S. Guldin, P. Docampo, S. Hüttner, P. Kohn, M. Stefik, H.J. Snaith, U. Wiesner, U. Steiner, Self-assembly as a design tool for the integration of photonic structures into excitonic solar cells, in Proceedings of the SPIE, vol. 8111 (2011). doi:10.1117/12.893798

  • B. O‘Regan, M. Grätzel, A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO\(_2\) films. Nature 353(6346), 737–740 (1991)

    Google Scholar 

  • J. Kroon, N. Bakker, H. Smit, P. Liska, K. Thampi, P. Wang, S. Zakeeruddin, M. Grätzel, A. Hinsch, S. Hore, U. Würfel, R. Sastrawan, J. Durrant, E. Palomares, H. Pettersson, T. Gruszecki, J. Walter, K. Skupien, G. Tulloch, Nanocrystalline dye-sensitized solar cells having maximum performance. Prog. Photovoltaics 15(1), 1–18 (2007)

    Google Scholar 

  • Z. Wang, H. Kawauchi, T. Kashima, H. Arakawa, Significant influence of TiO\(_2\) photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coord. Chem. Rev. 248(13–14), 1381–1389 (2004)

    Article  Google Scholar 

  • J.-H. Yum, E. Baranoff, S. Wenger, M. Nazeeruddin, M. Grätzel, Panchromatic engineering for dye-sensitized solar cells. Energ. Environ. Sci. 4(3), 842–857 (2011)

    Article  Google Scholar 

  • J. Ferber, J. Luther, Computer simulations of light scattering and absorption in dye-sensitized solar cells. Solar Energ. Mater. Solar Cells 54(1–4), 265–275 (1998)

    Article  Google Scholar 

  • S. Hore, C. Vetter, R. Kern, H. Smit, A. Hinsch, Influence of scattering layers on efficiency of dye-sensitized solar cells. Solar Energ. Mater. Solar Cells 90(9), 1176–1188 (2006)

    Article  Google Scholar 

  • Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Han, Dye-sensitized solar cells with conversion efficiency of 11.1%, Jpn. J. Appl. Phys. Part 2 Lett. Express Lett. 45(24–28), L638–L640 (2006)

    Google Scholar 

  • M. Nazeeruddin, T. Bessho, L. Cevey, S. Ito, C. Klein, F. De Angelis, S. Fantacci, P. Comte, P. Liska, H. Imai, M. Grätzel, A high molar extinction coefficient charge transfer sensitizer and its application in dye-sensitized solar cell. J. Photochem. Photobiol. A Chem. 185(2–3), 331–337 (2007)

    Article  Google Scholar 

  • S. Nishimura, N. Abrams, B. Lewis, L. Halaoui, T. Mallouk, K. Benkstein, J. van de Lagemaat, A. Frank, Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals. J. Am. Chem. Soc. 125(3), 6306–6310 (2003)

    Google Scholar 

  • L. Halaoui, N. Abrams, T. Mallouk, Increasing the conversion efficiency of dye-sensitized TiO\(_2\) photoelectrochemical cells by coupling to photonic crystals. J. Phys. Chem. B 109(13), 6334–6342 (2005)

    Google Scholar 

  • S. Colodrero, A. Mihi, L. Haggman, M. Ocaña, G. Boschloo, A. Hagfeldt, H. Míguez, Porous one-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells. Adv. Mater. 21(7), 764–770 (2009)

    Article  Google Scholar 

  • D. Colonna, S. Colodrero, H. Lindstrom, A. Di Carlo, H. Míguez, Introducing structural colour in dscs by using photonic crystals: interplay between conversion efficiency and optical properties. Energ. Environ. Sci. (2012). doi:10.1039/C2EE02658A

  • K. Sakoda, Enhanced light amplification due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals. Opt. Express 4(5), 167–176 (1999)

    Article  ADS  Google Scholar 

  • D. Mittleman, J. Bertone, P. Jiang, K. Hwang, V. Colvin, Optical properties of planar colloidal crystals: dynamical diffraction and the scalar wave approximation. J. Chem. Phys. 111(1), 345–354 (1999)

    Article  ADS  Google Scholar 

  • R. Rengarajan, D. Mittleman, C. Rich, V. Colvin, Effect of disorder on the optical properties of colloidal crystals. Phys. Rev. E 71(1), Part 2, 15968–15976 (2005)

    Google Scholar 

  • A. Mihi, H. Míguez, Origin of light-harvesting enhancement in colloidal-photonic-crystal-based dye-sensitized solar cells. J. Phys. Chem. B 109(33), 15968–15976 (2005)

    Article  Google Scholar 

  • S. Ito, S. Zakeeruddin, P. Comte, P. Liska, D. Kuang, M. Grätzel, Bifacial dye-sensitized solar cells based on an ionic liquid electrolyte. Nat. Photonics 2(11), 693–698 (2008)

    Article  ADS  Google Scholar 

  • A. Mihi, F. Lopez-Alcaraz, H. Míguez, Full spectrum enhancement of the light harvesting efficiency of dye sensitized solar cells by including colloidal photonic crystal multilayers. Appl. Phys. Lett. 88(19), 193110 (2006)

    Article  ADS  Google Scholar 

  • R. Pozas, A. Mihi, M. Ocana, H. Míguez, Building nanocrystalline planar defects within self-assembled photonic crystals by spin-coating. Adv. Mat. 18(9), 1183–1187 (2006)

    Article  Google Scholar 

  • A. Mihi, M.E. Calvo, J. Anta, H. Míguez, Spectral response of opal-based dye-sensitized solar cells. J. Phys. Chem. C 112(1), 13–17 (2008)

    Article  Google Scholar 

  • S.-H.A. Lee, N. Abrams, P. Hoertz, G. Barber, L. Halaoui, T. Mallouk, Coupling of titania inverse opals to nanocrystalline titania layers in dye-sensitized solar cells. J. Phys. Chem. B 112(46), 14415–14421 (2008)

    Article  Google Scholar 

  • M. Nedelcu, S. Guldin, M. Orilall, J. Lee, S. Hüttner, E. Crossland, S. Warren, C. Ducati, P. Laity, D. Eder, U. Wiesner, U. Steiner, H. Snaith, Monolithic route to efficient dye-sensitized solar cells employing diblock copolymers for mesoporous TiO\(_2\). J. Mater. Chem. 20(7), 1261–1268 (2010)

    Article  Google Scholar 

  • P. Jiang, J. Bertone, K. Hwang, V. Colvin, Single-crystal colloidal multilayers of controlled thickness. Chem. Mater. 11(8), 2132–2140 (1999)

    Article  Google Scholar 

  • H. Míguez, G. Ozin, S. Yang, N. Tetreault, Mechanical stability enhancement by pore size connectivity control in colloidal crystals by layer-by-growth of oxide, U.S. Patent App. 11/878,023, 2007

    Google Scholar 

  • S. Guldin, Nanostructuring inorganic material by copolymer-assisted self-assembly and its multifunctional use for dye-sensitised solar cells, Master’s thesis, Technische Universität München, 2008

    Google Scholar 

  • A. Usami, Theoretical study of application of multiple scattering of light to a dye-sensitized nanocrystalline photoelectrochemical cell. Chem. Phys. Lett. 277(1–3), 105–108 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  • M. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos, M. Grätzel, Conversion of light to electricity by cis-x2bis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(ii) charge-transfer sensitizers (X = Cl-, Br-, I-, Cn-, and Scn-) on nanocrystalline TiO\(_2\) electrodes. J. Am. Chem. Soc. 115(14), 6382–6390 (1993)

    Google Scholar 

  • Y. Seo, K. Woo, J. Kim, H. Lee, W. Lee, Rapid fabrication of an inverse opal TiO\(_2\) photoelectrode for DSSC using a binary mixture of TiO\(_2\) nanoparticles and polymer microspheres. Adv. Funct. Mater. 21(16), 3094–3103 (2011)

    Article  Google Scholar 

  • A. Mihi, C. Zhang, P. Braun, Transfer of preformed three-dimensional photonic crystals onto dye-sensitized solar cells. Angewandte Chemie-Int. Ed. 50(25), 5711–5714 (2011)

    Article  Google Scholar 

  • J.-H. Shin, J. Moon, Bilayer inverse opal TiO\(_2\) electrodes for dye-sensitized solar cells via post-treatment. Langmuir 27(10), 6311–6315 (2011)

    Article  Google Scholar 

  • B. Hatton, L. Mishchenko, S. Davis, K. Sandhage, J. Aizenberg, Assembly of large-area, highly ordered, crack-free inverse opal films. Proc. Natl. Acad. Sci. U.S.A. 107(23), 10354–10359 (2010)

    Article  ADS  Google Scholar 

  • L. Liu, S. Karuturi, L. Su, A.I.Y. Tok, TiO\(_2\) inverse-opal electrode fabricated by atomic layer deposition for dye-sensitized solar cell applications. Energ. Environ. Sci. 4(1), 209–215 (2011)

    Article  Google Scholar 

  • S. Guldin, P. Docampo, M. Stefik, G. Kamita, U. Wiesner, H. Snaith, U. Steiner, Layer-by-layer formation of block copolymer derived TiO\(_2\) for solid state dye-sensitized solar cells. Small 8(3), 432–440 (2012)

    Article  Google Scholar 

  • S. Colodrero, A. Forneli, C. Lopez-Lopez, L. Pelleja, H. Míguez, E. Palomares, Efficient transparent thin dye solar cells based on highly porous 1D photonic crystals. Adv. Funct. Mater. 22(6), 1303–1310 (2012)

    Google Scholar 

  • D.-K. Hwang, B. Lee, D.-H. Kim, R. Chang, Efficiency enhancement in dye-sensitized solar cells by three-dimensional photonic crystals, Applied Physics Express, vol 5 issue 12, 122–103, 2012

    Google Scholar 

  • U. Bach, D. Lupo, P. Comte, J.E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, M. Grätzel, Solid-state dye-sensitized mesoporous TiO\(_{2}\) solar cells with high photon-to-electron conversion efficiencies. Nature 395, 583–585 (1998)

    Article  ADS  Google Scholar 

  • J. Melas-Kyriazi, I.-K. Ding, A. Marchioro, A. Punzi, B. Hardin, G. Burkhard, N. Tetreault, M. Grätzel, J.-E. Moser, M. McGehee, The effect of hole transport material pore filling on photovoltaic performance in solid-state dye-sensitized solar cells. Adv. Energ. Mater. 1(3), 407–414 (2011)

    Google Scholar 

  • J. Halls, C. Walsh, N. Greenham, E. Marseglia, R. Friend, S. Moratti, A. Holmes, Efficient photodiodes from interpenetrating polymer networks. Nature 376(6540), 498–500 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Guldin .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Guldin, S. (2013). Dye-Sensitised Solar Cell Based on a Three-Dimensional Photonic Crystal. In: Inorganic Nanoarchitectures by Organic Self-Assembly. Springer Theses. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00312-2_9

Download citation

Publish with us

Policies and ethics