Skip to main content

Crystal Growth in Block Copolymer-Derived Mesoporous TiO\(_2\)

  • Chapter
  • First Online:
Inorganic Nanoarchitectures by Organic Self-Assembly

Part of the book series: Springer Theses ((Springer Theses))

  • 775 Accesses

Abstract

Anatase TiO2 is typically a central component in high performance dye-sensitised solar cells (DSCs). In this chapter a new materials route is presented for mesoporous titania films of controlled pore dimensions and enhanced temperature stability, preventing the collapse of porosity at temperatures up to 700 °C. The systematic study of the temperature dependence on DSC performance reveals a parameter trade-off with consequences for the future electrode design of solid state and liquid electrolyte devices.

Published by Guldin et al. (2011) in Energy & Environmental Science [1]. See also “Charge transport limitations in self-assembled TiO\(_2\) photoanodes for dye-sensitized solar cells” published by Docampo et al. (2013) in Journal of Physical Chemistry Letters [2]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • S. Guldin, S. Hüttner, P. Tiwana, M. Orilall, B. Ülgüt, M. Stefik, P. Docampo, M. Kolle, G. Divitini, C. Ducati, S. Redfern, H. Snaith, U. Wiesner, D. Eder, U. Steiner, Improved conductivity in dye-sensitised solar cells through block-copolymer confined TiO\(_2\) crystallisation. Energy Environ. Sci. 4(1), 225–233 (2011)

    Article  Google Scholar 

  • P. Docampo, S. Guldin, U. Steiner, H. J. Snaith, J. Phy. Chem. Lett. 4(5), 698–703 (2013)

    Google Scholar 

  • B. O‘Regan, M. Grätzel, A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO\(_2\) films. Nature 353(6346), 737–740 (1991)

    Google Scholar 

  • A. Linsebigler, G. Lu, J. Yates, Photocatalysis on TiO\(_2\) surfaces–principles, mechanisms, and selected results. Chem. Rev. 95(3), 735–758 (1995)

    Article  Google Scholar 

  • T. Brezesinski, J. Wang, J. Polleux, B. Dunn, S. Tolbert, Templated nanocrystal-based porous TiO\(_2\) films for next-generation electrochemical capacitors. J. Am. Chem. Soc. 131(5), 1802–1809 (2009)

    Article  Google Scholar 

  • O. Varghese, D. Gong, M. Paulose, K. Ong, C. Grimes, Hydrogen sensing using titania nanotubes. Sen. Actuators B Chem 93(1–3), 338–344 (2003)

    Article  Google Scholar 

  • P. Bonhote, E. Gogniat, F. Campus, L. Walder, M. Grätzel, Nanocrystalline electrochromic displays. Displays 20(3), 137–144 (1999)

    Article  Google Scholar 

  • S. Burnside, V. Shklover, C. Barbé, P. Comte, F. Arendse, K. Brooks, M. Grätzel, Self-organization of TiO\(_2\) nanoparticles in thin films. Chem. Mater. 10(9), 2419–2425 (1998)

    Article  Google Scholar 

  • H. Tang, K. Prasad, R. Sanjines, P. Schmid, F. Levy, Electrical and optical properties of TiO\(_2\) anatase thin-films. J. Appl. Phys. 75(4), 2042–2047 (1994)

    Article  ADS  Google Scholar 

  • L. Forro, O. Chauvet, D. Emin, L. Zuppiroli, H. Berger, F. Levy, High-mobility n-type charge-carriers in large single-crystals of anatase (TiO\(_2\)). J. Appl. Phys. 75(1), 633–635 (1994)

    Article  ADS  Google Scholar 

  • T. Dittrich, E. Lebedev, J. Weidmann, Electron drift mobility in porous Ti\(O_2\) (anatase). Phys. Status Solidi A 1998(165), R5–R6 (1998)

    Article  Google Scholar 

  • P. Tiwana, P. Parkinson, M. Johnston, H. Snaith, L. Herz, Ultrafast terahertz conductivity dynamics in mesoporous TiO\(_2\): influence of dye sensitization and surface treatment in solid-state dye-sensitized solar cells. J. Phys. Chem. C 114(2), 1365–1371 (2010)

    Article  Google Scholar 

  • P. Tiwana, P. Docampo, M. Johnston, H. Snaith, L. Herz, Electron mobility and injection dynamics in mesoporous ZnO, SnO\(_2\), and TiO\(_2\) films used in dye-sensitized solar cells. ACS Nano 5(6), 5158–5166 (2011)

    Article  Google Scholar 

  • A. Frank, N. Kopidakis, J. van de Lagemaat, Electrons in nanostructured TiO\(_2\) solar cells: transport, recombination and photovoltaic properties. Coord. Chem. Rev. 248(13–14), 1165–1179 (2004)

    Article  Google Scholar 

  • B. O’Regan, J. Durrant, Kinetic and energetic paradigms for dye-sensitized solar cells: moving from the ideal to the real. Acc. Chem. Res. 42(11), 1799–808 (2009)

    Article  Google Scholar 

  • H. Snaith, L. Schmidt-Mende, Advances in liquid-electrolyte and solid-state dye-sensitized solar cells. Adv. Mater. 19(20), 3187–3200 (2007)

    Article  Google Scholar 

  • L. Li, M. Krissanasaeranee, S. Pattinson, M. Stefik, U. Wiesner, U. Steiner, D. Eder, Enhanced photocatalytic properties in well-ordered mesoporous WO\(_3\). Chem. Commun. 46(40), 7620–7622 (2010)

    Article  Google Scholar 

  • N. Tetreault, M. Grätzel, Novel nanostructures for next generation dye-sensitized solar cells. Energy Environ. Sci. doi:10.1039/C2EE03242B (2012)

  • J. Melas-Kyriazi, I.-K. Ding, A. Marchioro, A. Punzi, B. Hardin, G. Burkhard, N. Tetreault, M. Grätzel, J.-E. Moser, M. McGehee, The effect of hole transport material pore filling on photovoltaic performance in solid-state dye-sensitized solar cells. Adv. Energy Mater. 1(3), 407–414 (2011)

    Article  Google Scholar 

  • P. Yang, D. Zhao, D. Margolese, B. Chmelka, G. Stucky, Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396(6707), 152–155 (1998)

    Article  ADS  Google Scholar 

  • E. Crepaldi, G. Soler-Illia, D. Grosso, F. Cagnol, F. Ribot, C. Sanchez, Controlled formation of highly organized mesoporous titania thin films: from mesostructured hybrids to mesoporous nanoanatase TiO\(_2\). J. Am. Chem. Soc. 125(32), 9770–9786 (2003)

    Article  Google Scholar 

  • B. Smarsly, D. Grosso, T. Brezesinski, N. Pinna, C. Boissière, M. Antonietti, C. Sanchez, Highly crystalline cubic mesoporous TiO\(_2\) with 10-nm pore diameter made with a new block copolymer template. Chem. Mater. 16(15), 2948–2952 (2004)

    Article  Google Scholar 

  • M. Zukalová, A. Zukal, L. Kavan, M. Nazeeruddin, P. Liska, M. Grätzel, Organized mesoporous TiO\(_2\) films exhibiting greatly enhanced performance in dye-sensitized solar cells. Nano Lett. 5(9), 1789–1792 (2005)

    Article  ADS  Google Scholar 

  • E. Crossland, M. Kamperman, M. Nedelcu, C. Ducati, U. Wiesner, D.-M. Smilgies, G. Toombes, M. Hillmyer, S. Ludwigs, U. Steiner, H. Snaith, A bicontinuous double gyroid hybrid solar cell. Nano Lett. 9(8), 2807–2812 (2009)

    Article  ADS  Google Scholar 

  • S. Choi, M. Mamak, S. Speakman, N. Chopra, G. Ozin, Evolution of nanocrystallinity in periodic mesoporous anatase thin films. Small 1(2), 226–232 (2005)

    Article  Google Scholar 

  • D. Fattakhova-Rohlfing, M. Wark, T. Brezesinski, B.M. Smarsly, J. Rathousky, Highly organized mesoporous TiO\(_2\) films with controlled crystallinity: a Li-insertion study. Adv. Funct. Mater. 17(1), 123–132 (2007)

    Article  Google Scholar 

  • J. Kondo, K. Domen, Crystallization of mesoporous metal oxides. Chem. Mater. 20(3), 835–847 (2008)

    Article  ADS  Google Scholar 

  • J. Szeifert, D. Fattakhova-Rohlfing, D. Georgiadou, V. Kalousek, J. Rathousky, D. Kuang, S. Wenger, S. Zakeeruddin, M. Grätzel, T. Bein, “Brick and Mortar” strategy for the formation of highly crystalline mesoporous titania films from nanocrystalline building blocks. Chem. Mater. 21(7), 1260–1265 (2009)

    Article  Google Scholar 

  • K. Frindell, M. Bartl, M. Robinson, G. Bazan, A. Popitsch, G. Stucky, Visible and near-IR luminescence via energy transfer in rare earth doped mesoporous titania thin films with nanocrystalline walls. J. Solid State Chem. 172(1), 81–88 (2003)

    Article  ADS  Google Scholar 

  • I. Kartini, D. Menzies, D. Blake, J. da Costa, P. Meredith, J. Riches, G. Lu, Hydrothermal seeded synthesis of mesoporous titania for application in dye-sensitised solar cells (DSSCs). J. Mater. Chem. 14(19), 2917–2921 (2004)

    Article  Google Scholar 

  • M. Templin, A. Franck, A. DuChesne, H. Leist, Y. Zhang, R. Ulrich, V. Schädler, U. Wiesner, Organically modified aluminosilicate mesostructures from block copolymer phases. Science 278(5344), 1795–1798 (1997)

    Article  ADS  Google Scholar 

  • G. Floudas, R. Ulrich, U. Wiesner, Microphase separation in poly(isoprene-b-ethylene oxide) diblock copolymer melts. I. Phase state and kinetics of the order-to-order transitions. J. Chem. Phys. 110(1), 652–663 (1999)

    Article  ADS  Google Scholar 

  • S. Renker, S. Mahajan, D. Babski, I. Schnell, A. Jain, J. Gutmann, Y. Zhang, S. Gruner, H. Spiess, U. Wiesner, Nanostructure and shape control in polymer-ceramic hybrids from poly(ethylene oxide)-block-poly(hexyl methacrylate) and aluminosilicates derived from them. Macromol. Chem. Phys. 205(8), 1021–1030 (2004)

    Article  Google Scholar 

  • J. Allgaier, A. Poppe, L. Willner, D. Richter, Synthesis and characterization of poly[1,4-isoprene-b-(ethylene oxide)] and poly[ethylene-co-propylene-b-(ethylene oxide)] block copolymers. Macromolecules 30(6), 1582–1586 (1997)

    Article  ADS  Google Scholar 

  • S. Warren, F. Disalvo, U. Wiesner, Nanoparticle-tuned assembly and disassembly of mesostructured silica hybrids. Nat. Mater. 6(2), 156–161 (2007)

    Article  ADS  Google Scholar 

  • J. Olivero, R. Longbothum, Empirical fits to voigt line-width–brief review. J. Quant. Spectrosc. Radiat. Transfer 17(2), 233–236 (1977)

    Article  ADS  Google Scholar 

  • P. Scherrer, Bestimmung der Größe und der innerern Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, mathematisch-physikalische Klasse, pp. 98–100 (1918)

    Google Scholar 

  • N. Neale, N. Kopidakis, J. van de Lagemaat, M. Grätzel, A. Frank, Effect of a coadsorbent on the performance of dye-sensitized TiO\(_2\) solar cells: shielding versus band-edge movement. J. Phys. Chem. B 109(49), 23183–23189 (2005)

    Article  Google Scholar 

  • D. Kuang, C. Klein, H. Snaith, J. Moser, R. Humphry-Baker, P. Comte, S. Zakeeruddin, M. Grätzel, Ion coordinating sensitizer for high efficiency mesoscopic dye-sensitized solar cells: influence of lithium ions on the photovoltaic performance of liquid and solid-state cells. Nano Lett. 6(4), 769–773 (2006)

    Article  ADS  Google Scholar 

  • Q. Wang, S. Ito, M. Grätzel, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, T. Bessho, H. Imai, Characteristics of high efficiency dye-sensitized solar cells. J. Phys. Chem. B 110(50), 25210–25221 (2006)

    Article  Google Scholar 

  • S. Bagshaw, E. Prouzet, T. Pinnavaia, Templating of mesoporous molecular-sieves by nonionic polyethylene oxide surfactants. Science 269(5228), 1242–1244 (1995)

    Article  ADS  Google Scholar 

  • S. Boettcher, J. Fan, C.-K. Tsung, Q. Shi, G. Stucky, Harnessing the sol-gel process for the assembly of non-silicate mesostructured oxide materials. Acc. Chem. Res. 40(9), 784–792 (2007)

    Article  Google Scholar 

  • C. Sanchez, C. Boissière, D. Grosso, C. Laberty, L. Nicole, Design, synthesis, and properties of inorganic and hybrid thin films having periodically organized nanoporosity. Chem. Mater. 20(3), 682–737 (2008)

    Article  Google Scholar 

  • International Centre for Diffraction Data, Anatase: PDF 71–1167. PCPDFWIN, database (1998)

    Google Scholar 

  • S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–311 (1938)

    Article  ADS  Google Scholar 

  • E. Barrett, L. Joyner, P. Halenda, The determination of pore volume and area distributions in porous substances. 1. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73(1), 373–380 (1951)

    Article  Google Scholar 

  • S. Lowell, J. Shields, M. Thomas, M. Thommes, Characterization of porous materials and powders: surface area, pore size and density (Springer, Dordrecht, 2004)

    Book  Google Scholar 

  • P. Hartmann, D.-K. Lee, B. Smarsly, J. Janek, Mesoporous TiO\(_2\): comparison of classical sol-gel and nanoparticle based photoelectrodes for the water splitting reaction. ACS Nano 4(6), 3147–3154 (2010)

    Article  Google Scholar 

  • N. Duffy, L. Peter, R. Rajapakse, K. Wijayantha, Investigation of the kinetics of the back reaction of electrons with tri-iodide in dye-sensitized nanocrystalline photovoltaic cells. J. Phys. Chem. B 104(38), 8916–8919 (2000)

    Article  Google Scholar 

  • B. O’Regan, J. Durrant, P. Sommeling, N. Bakker, Influence of the TiCl\(_4\) treatment on nanocrystalline TiO\(_2\) films in dye-sensitized solar cells. 2. Charge density, band edge shifts, and quantification of recombination losses at short circuit. J. Phys. Chem. C 111(37), 14001–14010 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Guldin .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Guldin, S. (2013). Crystal Growth in Block Copolymer-Derived Mesoporous TiO\(_2\) . In: Inorganic Nanoarchitectures by Organic Self-Assembly. Springer Theses. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00312-2_6

Download citation

Publish with us

Policies and ethics