Skip to main content

Experimental and Analytical Techniques

  • Chapter
  • First Online:
Book cover Inorganic Nanoarchitectures by Organic Self-Assembly

Part of the book series: Springer Theses ((Springer Theses))

  • 798 Accesses

Abstract

A wide range of experimental techniques were used in the course of this study to characterise and analyse material properties as well as their implementations in functional devices. The key tools are presented in this chapter, including material fabrication as well as characterisation by imaging, scattering and spectroscopic techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • S. Bagshaw, E. Prouzet, T. Pinnavaia, Templating of mesoporous molecular-sieves by nonionic polyethylene oxide surfactants. Science 269(5228), 1242–1244 (1995)

    Article  ADS  Google Scholar 

  • G. Floudas, R. Ulrich, U. Wiesner, Microphase separation in poly(isoprene-b-ethylene oxide) diblock copolymer melts. I. Phase state and kinetics of the order-to-order transitions. J. Chem. Phys. 110(1), 652–663 (1999)

    Article  ADS  Google Scholar 

  • M. Templin, A. Franck, A. DuChesne, H. Leist, Y. Zhang, R. Ulrich, V. Schädler, U. Wiesner, Organically modified aluminosilicate mesostructures from block copolymer phases. Science 278(5344), 1795–1798 (1997)

    Article  ADS  Google Scholar 

  • S. Renker, S. Mahajan, D. Babski, I. Schnell, A. Jain, J. Gutmann, Y. Zhang, S. Gruner, H. Spiess, U. Wiesner, Nanostructure and shape control in polymer-ceramic hybrids from poly(ethylene oxide)-block-poly(hexyl methacrylate) and aluminosilicates derived from them. Macromol. Chem. Phys. 205(8), 1021–1030 (2004)

    Article  Google Scholar 

  • J. Allgaier, A. Poppe, L. Willner, D. Richter, Synthesis and characterization of poly[1,4-isoprene-b-(ethylene oxide)] and poly[ethylene-co-propylene-b-(ethylene oxide)] block copolymers. Macromolecules 30(6), 1582–1586 (1997)

    Article  ADS  Google Scholar 

  • G. Floudas, B. Vazaiou, F. Schipper, R. Ulrich, U. Wiesner, H. Iatrou, N. Hadjichristidis, Poly(ethylene oxide-b-isoprene) diblock copolymer phase diagram. Macromolecules 34(9), 2947–2957 (2001)

    Article  ADS  Google Scholar 

  • C. Brinker, G. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, 1st edn. (Academic Press, Boston, 1990)

    Google Scholar 

  • S. Warren, F. Disalvo, U. Wiesner, Nanoparticle-tuned assembly and disassembly of mesostructured silica hybrids. Nat. Mater. 6(2), 156–161 (2007)

    Article  ADS  Google Scholar 

  • A. Jain, U. Wiesner, Silica-type mesostructures from block copolymer phases: formation mechanism and generalization to the dense nanoparticle regime. Macromolecules 37(15), 5665–5670 (2004)

    Article  ADS  Google Scholar 

  • S. Boettcher, J. Fan, C.-K. Tsung, Q. Shi, G. Stucky, Harnessing the sol-gel process for the assembly of non-silicate mesostructured oxide materials. Acc. Chem. Res. 40(9), 784–792 (2007)

    Article  Google Scholar 

  • C. Sanchez, C. Boissière, D. Grosso, C. Laberty, L. Nicole, Design, synthesis, and properties of inorganic and hybrid thin films having periodically organized nanoporosity. Chem. Mater. 20(3), 682–737 (2008)

    Article  Google Scholar 

  • H. Schmidt, H. Wolter, Organically modified ceramics and their applications. J. Non-Cryst. Solids 121(1–3), 428–435 (1990)

    Article  ADS  Google Scholar 

  • S. Warren, Nanoparticle-block copolymer self-assembly. Ph.D. thesis, Cornell University, Faculty of the Graduate School, (2007)

    Google Scholar 

  • S. De Paul, J. Zwanziger, R. Ulrich, U. Wiesner, H. Spiess, Structure, mobility, and interface characterization of self-organized organic-inorganic hybrid materials by solid-state NMR. J. Am. Chem. Soc. 121(24), 5727–5736 (1999)

    Article  Google Scholar 

  • P. Mokarian-Tabari, M. Geoghegan, J.R. Howse, S.Y. Heriot, R. Thompson, R. Jones, Quantitative evaluation of evaporation rate during spin-coating of polymer blend films: control of film structure through defined-atmosphere solvent-casting. Eur. Phys. J. E. 33(4), 283–289 (2010)

    Article  Google Scholar 

  • C. Lawrence, The mechanics of spin coating of polymer films. Phys. Fluids. 31(10), 2786–2795 (1988)

    Article  ADS  Google Scholar 

  • D. Schubert, T. Dunkel, Spin coating from a molecular point of view: its concentration regimes, influence of molar mass and distribution. Mater. Res. Innovations. 7(5), 314–321 (2003)

    Article  Google Scholar 

  • D. Schubert, Spin coating as a method for polymer molecular weight determination. Polym. Bull. 38(2), 177–184 (1997)

    Article  Google Scholar 

  • M. Kolle, personal graphics collection

    Google Scholar 

  • F. Krebs, Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol. Energy Mater. Sol. Cells. 93(4), 394–412 (2009)

    Article  Google Scholar 

  • S. Weinstein, K. Ruschak, Coating flows. Annu. Rev. Fluid Mech. 36, 29–53 (2004)

    Article  ADS  Google Scholar 

  • U. Gedde, Polymer physics, 1st edn. (Kluwer Academic Publishers, Dordrecht, 1995)

    Google Scholar 

  • D. Williams, C. Carter, Transmission electron microscopy: a textbook for materials science (Springer, New York, 2009)

    Book  Google Scholar 

  • J. Ackermann, Manual for the SUPRA and ULTRA scanning electron microscopes. Zeiss SMT ltd., Manual SmartSEM V5.00, (2005)

    Google Scholar 

  • M. Kolle, Photonic structures inspired by nature. Ph.D. thesis, University of Cambridge, Physics Department, 2010

    Google Scholar 

  • W. Bragg, The diffraction of short electromagnetic waves by a crystal. Math. Proc. Cambridge Philos. Soc. 17, 43–57 (1913)

    MATH  Google Scholar 

  • R.-J. Roe, Methods of x-ray and neutron scattering in polymer science (Oxford University Press, New York, 2000)

    Google Scholar 

  • Wikimedia: public domain graphic (2011), http://commons.wikimedia.org

  • T. Holland, S. Redfern, Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineral. Mag. 61(1), 65–77 (1997)

    Article  Google Scholar 

  • W. Yim, R. Paff, Thermal-expansion of AlN, sapphire, and silicon. J. Appl. Phys. 45(3), 1456–1457 (1974)

    Article  ADS  Google Scholar 

  • E. Meagher, L. G.A., Polyhedral thermal expansion in the TiO\(_2\) polymorphs: refinement of the crystal structures of rutile and brookite at high temperatures. Can. Mineral. 17, 77–85 (1979)

    Google Scholar 

  • U. Diebold, The surface science of titanium dioxide. Surf. Sci. Rep. 48(5–8), 53–229 (2003)

    Article  ADS  Google Scholar 

  • F. Zernike, J. Prins, Die Beugung von Röntgenstrahlen in Flüssigkeiten als Effekt der Molekularordnung. Zeitschrift für Physik 41, 184–194 (1926)

    Article  ADS  Google Scholar 

  • I. Hamley, V. Castelletto, Small-angle scattering of block copolymers in the melt, solution and crystal states. Prog. Polym. Sci. 29(9), 909–948 (2004)

    Google Scholar 

  • K. Schätzel, Single-photon correlation techniques, in Dynamic light scattering, the method and some applications (Oxford University Press, New York, 1993)

    Google Scholar 

  • Malvern Instruments, Dynamic light scattering: an introduction in 30 minutes (2001), MRK656-01

    Google Scholar 

  • B. Berne, R. Pecora, Dynamic Light Scattering-with applications to chemistry, biology, and physics (Dover Publications Inc., New York, 2000)

    Google Scholar 

  • Malvern Instruments, Zetasizer nano series user manual. MAN0317 (2004)

    Google Scholar 

  • R. Jones, A new calculus for the treatment of optical systems I. Description and discussion of the calculus. J. Opt. Soc. Am. 31(7), 488–493 (1941)

    Article  ADS  Google Scholar 

  • J. Lee, P. Rovira, I. An, R. Collins, Rotating-compensator multichannel ellipsometry: applications for real time Stokes vector spectroscopy of thin film growth. Rev. Sci. Instrum. 69(4), 1800–1810 (1998)

    Article  ADS  Google Scholar 

  • P. Griffiths, J. de Haseth, Fourier transform infrared spectroscopy, 2nd edn. (John Wiley & Sons, New York, 2007)

    Book  Google Scholar 

  • C.-P. Sherman Hsu, Infrared spectroscopy in handbook of instrumental techniques for anylytical chemistry (Prentice Hall, New Jersey, 1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Guldin .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Guldin, S. (2013). Experimental and Analytical Techniques. In: Inorganic Nanoarchitectures by Organic Self-Assembly. Springer Theses. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00312-2_4

Download citation

Publish with us

Policies and ethics