Skip to main content

Structure-Function Interplay in Dye-Sensitised Solar Cells

  • Chapter
  • First Online:
  • 809 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The design, fabrication and characterisation of novel electrode architecture for dye-sensitised solar cells was of central importance for this thesis. The following chapter aims to explain the fundamental principles of this photovoltaic concept, elucidate the interplay between the electrode architecture and device function and highlight possible ways to increase the power conversion efficiency.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M. Grätzel, Perspectives for dye-sensitized nanocrystalline solar cells. Prog. Photovolt. 8(1), 171–185 (2000)

    Article  Google Scholar 

  2. J. Moser, Notiz über die Verstärkung photoelektrischer Ströme durch optische Sensibilisierung. Monatshefte für Chemie 8, 373 (1887)

    Article  Google Scholar 

  3. B. O‘Regan, M. Grätzel, A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO\(_2\) films. Nature 353(6346), 737–740 (1991)

    Google Scholar 

  4. W. Shockley, H. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32(3), 510–519 (1961)

    Article  ADS  Google Scholar 

  5. M. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos, M. Grätzel, Conversion of light to electricity by cis-x2bis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(ii) charge-transfer sensitizers (X = Cl-, Br-, I-, Cn-, and Scn-) on nanocrystalline TiO\(_2\) electrodes. J. Am. Chem. Soc. 115(14), 6382–6390 (1993)

    Article  Google Scholar 

  6. M. Nazeeruddin, S. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C. Fischer, M. Grätzel, Acid-base equilibria of (2,2 ‘-bipyridyl-4,4 ‘-dicarboxylic acid)ruthenium(II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania. Inorg. Chem. 38(26), 6298–6305 (1999)

    Article  Google Scholar 

  7. M. Nazeeruddin, P. Pechy, T. Renouard, S. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. Deacon, C. Bignozzi, M. Grätzel, Engineering of efficient panchromatic sensitizers for nanocrystalline TiO\(_2\)-based solar cells. J. Am. Chem. Soc. 123(8), 1613–1624 (2001)

    Article  Google Scholar 

  8. M. Grätzel, Dye-sensitized solar cells. J. Photochem. Photobiol. C 4(2), 145–153 (2003)

    Article  Google Scholar 

  9. Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Han, Dye-sensitized solar cells with conversion efficiency of 11.1%’. Jpn. J. Appl. Phys. Part 2-Lett. Express Lett. 45(24–28), L638–L640 (2006)

    Google Scholar 

  10. A. Yella, H.-W. Lee, H. Tsao, C. Yi, A. Chandiran, M. Nazeeruddin, E.-G. Diau, C.-Y. Yeh, S. Zakeeruddin, M. Grätzel, Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334(6056), 629–634 (2011)

    Article  ADS  Google Scholar 

  11. J. Nelson, The Physics of Solar Cells, 1st edn. (Imperial College Press, London, 2003)

    Google Scholar 

  12. Terrestrial reference spectra for photovoltaic performance evaluation, g173–03. American Society for Testing and Materials (ASTM), http://rredc.nrel.gov/solar/spectra/am1.5, (1999)

  13. M. Nazeeruddin, T. Bessho, L. Cevey, S. Ito, C. Klein, F. De Angelis, S. Fantacci, P. Comte, P. Liska, H. Imai, M. Grätzel, A high molar extinction coefficient charge transfer sensitizer and its application in dye-sensitized solar cell. J. Photochem. Photobiol A-Chem. 185(2–3), 331–337 (2007)

    Article  Google Scholar 

  14. A. Hagfeldt, M. Grätzel, Molecular photovoltaics. Acc. Chem. Res. 33(5), 269–277 (2000)

    Article  Google Scholar 

  15. G. Benko, J. Kallioinen, J. Korppi-Tommola, A. Yartsev, V. Sundstrom, Photoinduced ultrafast dye-to-semiconductor electron injection from nonthermalized and thermalized donor states. J. Am. Chem. Soc. 124(3), 489–493 (2002)

    Article  Google Scholar 

  16. P. Barnes, L. Liu, X. Li, A.Y. Anderson, H. Kisserwan, T. Ghaddar, J. Durrant, B. O’Regan, Re-evaluation of recombination losses in dye-sensitized cells: the failure of dynamic relaxation methods to correctly predict diffusion length in nanoporous photoelectrodes. Nano Lett. 9(10), 3532–3538 (2009)

    Article  ADS  Google Scholar 

  17. Q. Wang, S. Ito, M. Grätzel, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, T. Bessho, H. Imai, Characteristics of high efficiency dye-sensitized solar cells. J. Phys. Chem. B 110(50), 25210–25221 (2006)

    Article  Google Scholar 

  18. S. Haque, Y. Tachibana, D. Klug, J. Durrant, Charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films under externally applied bias. J. Phys. Chem. B 102(10), 1745–1749 (1998)

    Article  Google Scholar 

  19. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells. Chem. Rev. 110(11), 6595–6663 (2010)

    Article  Google Scholar 

  20. A. Hauch, A. Georg, Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochim. Acta 46(22), 3457–3466 (2001)

    Article  Google Scholar 

  21. N. Papageorgiou, W. Maier, M. Grätzel, An iodine/triiodide reduction electrocatalyst for aqueous and organic media. J. Electrochem. Soc. 144(3), 876–884 (1997)

    Article  Google Scholar 

  22. S. Haque, Y. Tachibana, R. Willis, J. Moser, M. Grätzel, D. Klug, J. Durrant, Parameters influencing charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films. J. Phys. Chem. B 104(3), 538–547 (2000)

    Article  Google Scholar 

  23. J. van de Lagemaat, N. Park, A. Frank, Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline TiO\(_2\) solar cells: a study by electrical impedance and optical modulation techniques. J. Phys. Chem. B 104(9), 2044–2052 (2000)

    Article  Google Scholar 

  24. A. Zaban, M. Greenshtein, J. Bisquert, Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements. ChemPhysChem 4(8), 859–864 (2003)

    Article  Google Scholar 

  25. H. Snaith, L. Schmidt-Mende, Advances in liquid-electrolyte and solid-state dye-sensitized solar cells. Adv. Mater. 19(20), 3187–3200 (2007)

    Article  Google Scholar 

  26. M. Grätzel, Photoelectrochemical cells. Nature 414(6861), 338–344 (2001)

    Article  ADS  Google Scholar 

  27. M. Grätzel, Recent advances in sensitized mesoscopic solar cells. Acc. Chem. Res. 42(11), 1788–1798 (2009)

    Article  Google Scholar 

  28. J. Kroon, N. Bakker, H. Smit, P. Liska, K. Thampi, P. Wang, S. Zakeeruddin, M. Grätzel, A. Hinsch, S. Hore, U. Würfel, R. Sastrawan, J. Durrant, E. Palomares, H. Pettersson, T. Gruszecki, J. Walter, K. Skupien, G. Tulloch, Nanocrystalline dye-sensitized solar cells having maximum performance. Prog. Photovolt. 15(1), 1–18 (2007)

    Article  Google Scholar 

  29. M. Grätzel, The advent of mesoscopic injection solar cells. Prog. Photovolt. 14(5), 429–442 (2006)

    Article  Google Scholar 

  30. S. Yoon, S. Tak, J. Kim, Y. Jun, K. Kang, J. Park, Application of transparent dye-sensitized solar cells to building integrated photovoltaic systems. Build. Environ. 46(10), 1899–1904 (2011)

    Article  Google Scholar 

  31. H. Snaith, Estimating the maximum attainable efficiency in dye-sensitized solar cells. Adv. Funct. Mater. 20(1), 13–19 (2010)

    Article  Google Scholar 

  32. L. Peter, Dye-sensitized nanocrystalline solar cells. Phys. Chem. Chem. Phys. 9(21), 2630–2642 (2007)

    Article  Google Scholar 

  33. G. Boschloo, A. Hagfeldt, Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Acc. Chem. Res. 42(11), 1819–1826 (2009)

    Article  Google Scholar 

  34. Z. Wang, H. Kawauchi, T. Kashima, H. Arakawa, Significant influence of TiO\(_2\) photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coord. Chem. Rev. 248(13–14), 1381–1389 (2004)

    Article  Google Scholar 

  35. J.-H. Yum, E. Baranoff, S. Wenger, M. Nazeeruddin, M. Grätzel, Panchromatic engineering for dye-sensitized solar cells. Energy Environ. Sci. 4(3), 842–857 (2011)

    Article  Google Scholar 

  36. A. Mihi, H. Míguez, Origin of light-harvesting enhancement in colloidal-photonic-crystal-based dye-sensitized solar cells. J. Phys. Chem. B 109(33), 15968–15976 (2005)

    Article  Google Scholar 

  37. M. Calvo, S. Colodrero, N. Hidalgo, G. Lozano, C. Lopez-Lopez, O. Sanchez-Sobrado, H. Míguez, Porous one dimensional photonic crystals: novel multifunctional materials for environmental and energy applications. Energy Environ. Sci. 4, 4800–4812 (2011)

    Article  Google Scholar 

  38. P. Cameron, L. Peter, S. Hore, How important is the back reaction of electrons via the substrate in dye-sensitized nanocrystalline solar cells? J. Phys. Chem. B 109(2), 930–936 (2005)

    Article  Google Scholar 

  39. B. O’Regan, J. Durrant, Kinetic and energetic paradigms for dye-sensitized solar cells: moving from the ideal to the real. Acc. Chem. Res. 42(11), 1799–808 (2009)

    Google Scholar 

  40. T. Dittrich, E. Lebedev, J. Weidmann, Electron drift mobility in porous Ti\(O_2\) (anatase). Phys. Status Solidi A 1998(165), R5–R6 (1998)

    Article  Google Scholar 

  41. S. Burnside, V. Shklover, C. Barbé, P. Comte, F. Arendse, K. Brooks, M. Grätzel, Self-organization of TiO\(_2\) nanoparticles in thin films. Chem. Mater. 10(9), 2419–2425 (1998)

    Article  Google Scholar 

  42. H. Tang, K. Prasad, R. Sanjines, P. Schmid, F. Levy, Electrical and optical properties of TiO\(_2\) anatase thin-films. J. Appl. Phys. 75(4), 2042–2047 (1994)

    Article  ADS  Google Scholar 

  43. P. Tiwana, P. Parkinson, M. Johnston, H. Snaith, L. Herz, Ultrafast terahertz conductivity dynamics in mesoporous TiO\(_2\): influence of dye sensitization and surface treatment in solid-state dye-sensitized solar cells. J. Phys. Chem. C 114(2), 1365–1371 (2010)

    Article  Google Scholar 

  44. P. Tiwana, P. Docampo, M. Johnston, H. Snaith, L. Herz, Electron mobility and injection dynamics in mesoporous ZnO, SnO\(_2\), and TiO\(_2\) films used in dye-sensitized solar cells. ACS Nano 5(6), 5158–5166 (2011)

    Article  Google Scholar 

  45. L. Forro, O. Chauvet, D. Emin, L. Zuppiroli, H. Berger, F. Levy, High-mobility n-type charge-carriers in large single-crystals of anatase (TiO\(_2\)). J. Appl. Phys. 75(1), 633–635 (1994)

    Article  ADS  Google Scholar 

  46. A. Frank, N. Kopidakis, J. van de Lagemaat, Electrons in nanostructured TiO\(_2\) solar cells: transport, recombination and photovoltaic properties. Cood. Chem. Rev. 248(13–14), 1165–1179 (2004)

    Article  Google Scholar 

  47. J. Bisquert, Chemical diffusion coefficient of electrons in nanostructured semiconductor electrodes and dye-sensitized solar cells. J. Phys. Chem. B 108(7), 2323–2332 (2004)

    Article  Google Scholar 

  48. J. van de Lagemaat, K. Zhu, K. Benkstein, A. Frank, Temporal evolution of the electron diffusion coefficient in electrolyte-filled mesoporous nanocrystalline TiO\(_2\) films. Inorg. Chim. Acta 361(3), 620–626 (2008)

    Article  Google Scholar 

  49. L. Dloczik, O. Ileperuma, I. Lauermann, L. Peter, E. Ponomarev, G. Redmond, N. Shaw, I. Uhlendorf, Dynamic response of dye-sensitized nanocrystalline solar cells: characterization by intensity-modulated photocurrent spectroscopy. J. Phys. Chem. B 101(49), 10281–10289 (1997)

    Article  Google Scholar 

  50. N. Kopidakis, N. Neale, K. Zhu, J. van de Lagemaat, A. Frank, Spatial location of transport-limiting traps in TiO\(_2\) nanoparticle films in dye-sensitized solar cells. Appl. Phys. Lett. 87(20), 1–3 (2005)

    Google Scholar 

  51. K. Zhu, N. Kopidakis, N. Neale, J. van de Lagemaat, A. Frank, Influence of surface area on charge transport and recombination in dye-sensitized TiO\(_2\) solar cells. J. Phys. Chem. B 110(50), 25174–25180 (2006)

    Article  Google Scholar 

  52. M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, F. Wang, Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO\(_2\) nanowires made by the “oriented attachment” mechanism. J. Am. Chem. Soc. 126(45), 14943–14949 (2004)

    Article  Google Scholar 

  53. K. Benkstein, N. Kopidakis, J. van de Lagemaat, A. Frank, Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells. J. Phys. Chem. B 107(31), 7759–7767 (2003)

    Article  Google Scholar 

  54. U. Bach, D. Lupo, P. Comte, J.E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, M. Grätzel, Solid-state dye-sensitized mesoporous TiO\(_{2}\) solar cells with high photon-to-electron conversion efficiencies. Nature 395, 583–585 (1998)

    Article  ADS  Google Scholar 

  55. J. Burschka, A. Dualeh, F. Kessler, E. Baranoff, N.-L. Cevey-Ha, C. Yi, M. Nazeeruddin, M. Grätzel, Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. J. Am. Chem. Soc. 133(45), 18042–18045 (2011)

    Article  Google Scholar 

  56. N. Tetreault, M. Grätzel, Novel nanostructures for next generation dye-sensitized solar cells. Energy Environ. Sci. (2012) doi:10.1039/C2EE03242B

  57. L. Schmidt-Mende, M. Grätzel, TiO\(_2\) pore-filling and its effect on the efficiency of solid-state dye-sensitized solar cells. Thin Solid Films 500(1–2), 296–301 (2006)

    Article  ADS  Google Scholar 

  58. J. Melas-Kyriazi, I.-K. Ding, A. Marchioro, A. Punzi, B. Hardin, G. Burkhard, N. Tetreault, M. Grätzel, J.-E. Moser, M. McGehee, The effect of hole transport material pore filling on photovoltaic performance in solid-state dye-sensitized solar cells. Adv. Energy Mater. 1(3), 407–414 (2011)

    Article  Google Scholar 

  59. N. Tetreault, E. Horvath, T. Moehl, J. Brillet, R. Smajda, S. Bungener, N. Cai, P. Wang, S. Zakeeruddin, L. Forro, A. Magrez, M. Grätzel, High-efficiency solid-state dye-sensitized solar cells: fast charge extraction through self-assembled 3D fibrous network of crystalline TiO\(_2\) nanowires. ACS Nano 4(12), 7644–7650 (2010)

    Article  Google Scholar 

  60. X. Feng, K. Shankar, O. Varghese, M. Paulose, T. Latempa, C. Grimes, Vertically aligned single crystal TiO\(_2\) nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. Nano Lett. 8(11), 3781–3786 (2008)

    Article  ADS  Google Scholar 

  61. B. Liu, E. Aydil, Growth of oriented single-crystalline rutile TiO\(_2\) nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 131(11), 3985–3990 (2009)

    Article  Google Scholar 

  62. O. Varghese, M. Paulose, C. Grimes, Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. Nat. Nanotechnol. 4(9), 592–597 (2009)

    Article  ADS  Google Scholar 

  63. M. Law, L. Greene, J. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells. Nat. Mater. 4(6), 455–459 (2005)

    Article  ADS  Google Scholar 

  64. R. Penn, J. Banfield, Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania. Geochimica Et Cosmochimica Acta 63(10), 1549–1557 (1999)

    Article  ADS  Google Scholar 

  65. F. Sauvage, F. Di Fonzo, A. Bassi, C. Casari, V. Russo, G. Divitini, C. Ducati, C. Bottani, P. Comte, M. Grätzel, Hierarchical TiO\(_2\) photoanode for dye-sensitized solar cells. Nano Lett. 10(7), 2562–2567 (2010)

    Article  ADS  Google Scholar 

  66. I. Cho, Z. Chen, A. Forman, D. Kim, P. Rao, T. Jaramillo, X. Zheng, Branched TiO\(_2\) nanorods for photoelectrochemical hydrogen production. Nano Lett. 11(11), 4978–4984 (2011)

    Article  ADS  Google Scholar 

  67. E. Enache-Pommer, B. Liu, E. Aydil, Electron transport and recombination in dye-sensitized solar cells made from single-crystal rutile TiO\(_2\) nanowires. Phys. Chem. Chem. Phys. 11(42), 9648–9652 (2009)

    Article  Google Scholar 

  68. K. Zhu, N. Neale, A. Miedaner, A. Frank, Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO\(_2\) nanotubes arrays. Nano Lett. 7(1), 69–74 (2007)

    Article  ADS  Google Scholar 

  69. K. Zhu, N. Neale, A. Halverson, J. Kim, A. Frank, Effects of annealing temperature on the charge-collection and light-harvesting properties of TiO\(_2\) nanotube-based dye-sensitized solar cells. J. Phys. Chem. C 114(32), 13433–13441 (2010)

    Article  Google Scholar 

  70. E. Crossland, M. Kamperman, M. Nedelcu, C. Ducati, U. Wiesner, D.-M. Smilgies, G. Toombes, M. Hillmyer, S. Ludwigs, U. Steiner, H. Snaith, A bicontinuous double gyroid hybrid solar cell. Nano Lett. 9(8), 2807–2812 (2009)

    Article  ADS  Google Scholar 

  71. E. Crossland, M. Nedelcu, C. Ducati, S. Ludwigs, M. Hillmyer, U. Steiner, H. Snaith, Block copolymer morphologies in dye-sensitized solar cells: probing the photovoltaic structure-function relation. Nano Lett. 9(8), 2813–2819 (2009)

    Article  ADS  Google Scholar 

  72. N. Cai, S.-J. Moon, L. Cevey-Ha, T. Moehl, R. Humphry-Baker, P. Wang, S. Zakeeruddin, M. Grätzel, An organic D-pi-A dye for record efficiency solid-state sensitized heterojunction solar cells. Nano Lett. 11(4), 1452–1456 (2011)

    Article  ADS  Google Scholar 

  73. A. Usami, Theoretical study of application of multiple scattering of light to a dye-sensitized nanocrystalline photoelectrochemical cell. Chem. Phys. Lett. 277(1–3), 105–108 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  74. J. Ferber, J. Luther, Computer simulations of light scattering and absorption in dye-sensitized solar cells. Solar Energy Mater. Solar Cells 54(1–4), 265–275 (1998)

    Article  Google Scholar 

  75. S. Hore, C. Vetter, R. Kern, H. Smit, A. Hinsch, Influence of scattering layers on efficiency of dye-sensitized solar cells. Solar Energy Mater. Solar Cells 90(9), 1176–1188 (2006)

    Article  Google Scholar 

  76. F. Sauvage, D. Chen, P. Comte, F. Huang, L.-P. Heiniger, Y.-B. Cheng, R. A. Caruso, M. Grätzel, Dye-sensitized solar cells employing a single film of mesoporous TiO\(_2\) beads achieve power conversion efficiencies over 10%. ACS Nano 4(8), 4420–4425 (2010)

    Google Scholar 

  77. B. Chen, F. Huang, Y.-B. Cheng, R. Caruso, Mesoporous anatase TiO\(_2\) beads with high surface areas and controllable pore sizes : a superior candidate for high-performance dye-sensitized solar cells. Adv. Mater. 21, 2206–2210 (2009)

    Article  Google Scholar 

  78. I. Yu, Y. Kim, H. Kim, W. Lee, C. And Lee, Size-dependent light-scattering effects of nanoporous TiO\(_2\) spheres in dye-sensitized solar cells. J. Mater. Chem. 21(2), 532–538 (2011)

    Article  Google Scholar 

  79. D. Colonna, S. Colodrero, H. Lindstrom, A. Di Carlo, H. Míguez, Introducing structural colour in dscs by using photonic crystals: interplay between conversion efficiency and optical properties. Energy Environ. Sci. (2012). doi:10.1039/C2EE02658A

  80. S. Nishimura, N. Abrams, B. Lewis, L. Halaoui, T. Mallouk, K. Benkstein, J. van de Lagemaat, A. Frank, Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals. J. Am. Chem. Soc. 125(3), 6306–6310 (2003)

    Article  Google Scholar 

  81. L. Halaoui, N. Abrams, T. Mallouk, Increasing the conversion efficiency of dye-sensitized TiO\(_2\) photoelectrochemical cells by coupling to photonic crystals. J. Phys. Chem. B 109(13), 6334–6342 (2005)

    Article  Google Scholar 

  82. K. Sakoda, Enhanced light amplification due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals. Opt. Express 4(5), 167–176 (1999)

    Article  ADS  Google Scholar 

  83. G. von Freymann, S. John, S. Wong, V. Kitaev, G. Ozin, Measurement of group velocity dispersion for finite size three-dimensional photonic crystals in the near-infrared spectral region. Appl. Phys. Lett. 86(5), 053108 (2005)

    Google Scholar 

  84. R. Rengarajan, D. Mittleman, C. Rich, V. Colvin, Effect of disorder on the optical properties of colloidal crystals. Phys. Rev. E 71(1), Part 2, 15968–15976 (2005)

    Google Scholar 

  85. D. Mittleman, J. Bertone, P. Jiang, K. Hwang, V. Colvin, Optical properties of planar colloidal crystals: dynamical diffraction and the scalar wave approximation. J. Chem. Phys. 111(1), 345–354 (1999)

    Article  ADS  Google Scholar 

  86. S.-H.A. Lee, N. Abrams, P. Hoertz, G. Barber, L. Halaoui, T. Mallouk, Coupling of titania inverse opals to nanocrystalline titania layers in dye-sensitized solar cells. J. Phys. Chem. B 112(46), 14415–14421 (2008)

    Article  Google Scholar 

  87. S. Colodrero, M. Ocaña, A. Gonzalez-Elipe, H. Míguez, Response of nanoparticle-based one-dimensional photonic crystals to ambient vapor pressure. Langmuir 24(21), 9135–9139 (2008)

    Article  Google Scholar 

  88. S. Colodrero, A. Mihi, J. Anta, M. Ocana, H. Míguez, Experimental demonstration of the mechanism of light harvesting enhancement in photonic-crystal-based dye-sensitized solar cells. J. Phys. Chem. C 113(4), 1150–1154 (2009)

    Article  Google Scholar 

  89. S. Colodrero, A. Mihi, L. Haggman, M. Ocaña, G. Boschloo, A. Hagfeldt, H. Míguez, Porous one-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells. Adv. Mater. 21(7), 764–770 (2009)

    Article  Google Scholar 

  90. S. Colodrero, A. Forneli, C. Lopez-Lopez, L. Pelleja, H. Míguez, E. Palomares, Efficient transparent thin dye solar cells based on highly porous 1D photonic crystals. Adv. Funct. Mater. 22(6), 1303–1310 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Guldin .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Guldin, S. (2013). Structure-Function Interplay in Dye-Sensitised Solar Cells. In: Inorganic Nanoarchitectures by Organic Self-Assembly. Springer Theses. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00312-2_3

Download citation

Publish with us

Policies and ethics