Skip to main content

Block Copolymer Assembled Antireflective Coatings with Self-Cleaning Properties

  • Chapter
  • First Online:
Inorganic Nanoarchitectures by Organic Self-Assembly

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Reflection losses at optical interfaces are detrimental for many applications in optics and optoelectronics. Antireflection coatings (ARCs) are typically based on the principle that light reflected at the ARC’s interfaces interferes destructively to maximise light transmission. Advances in the fabrication of porous thin films have enabled to achieve refractive indices low enough to meet conditions for zero-reflectance off substrate materials like glass. Yet, many widespread applications require robustness and self-cleaning of ARCs, as well as low processing temperatures and compatibility with plastic substrates. In this chapter a new concept is presented which relies on the use of a high molecular weight block copolymer system with a large volume fraction of the hydrophobic block in combination with silica sol-gel chemistry. Spontaneous dense packing of colloidal micelles results in the co-assembly of the inorganic material in an inverse-opal like morphology. Subsequent removal of the polymer host leads to robust and continuous inorganic films with refractive indices as low as 1.13. The polymer-driven self-assembly route to ultralow refractive index films enables to replace up to 50 w% silica with high refractive index photocatalytic TiO2 nanocrystals, which freely disperse within the inorganic network. The resulting ARCs show good optical and self-cleaning properties and can be processed onto flexible plastic substrates.

Work in preparation for publication by Guldlin et al. [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • S. Guldin, P. Kohn, M. Stefik, J. Song, G. Divitini, C. Ducati, U. Wiesner, U. Steiner, Self-cleaning antireflective optical coatings, manuscript under review

    Google Scholar 

  • J. von Fraunhofer, Versuche über die Ursachen des Anlaufens und Mattwerdens des Glases und die Mittel, densselben zuvorzukommen”, Verlag der Königlich Bayerischen Akademie der Wissenschaften (1817)

    Google Scholar 

  • L. Raighleigh, On the intensity of light reflected from certain surfaces at nearly perpendicular incidence. Proc. Roy. Soc. 41, 275–294 (1886)

    Article  Google Scholar 

  • H. Macleod, Thin Film Optical Filters, 3rd edn. (Institute of Physics Publishing, Bristol, 2001)

    Book  Google Scholar 

  • D. Bruggeman, Calculation of various physics constants in heterogenous substances. I. dielectricity constants and conductivity of mixed bodies from isotropic substances. Annalen Der Physik 24(7), 636–664 (1935)

    Article  ADS  Google Scholar 

  • D. Bergman, D. Stroud, Physical-properties of macroscopically inhomogeneous-media, in Solid State Physics: Advances in Research and applications, vol. 46 (Academic Press Inc, 1992), pp. 147–269.

    Google Scholar 

  • N. Hutchinson, T. Coquil, A. Navid, L. Pilon, Effective optical properties of highly ordered mesoporous thin films. Thin Solid Films 518(8), 2141–2146 (2010)

    Article  ADS  Google Scholar 

  • S. Walheim, E. Schäffer, J. Mlynek, U. Steiner, Nanophase-separated polymer films as high-performance antireflection coatings. Science 283(5401), 520–522 (1999)

    Article  ADS  Google Scholar 

  • S. Kim, J. Cho, K. Char, Thermally stable antireflective coatings based on nanoporous organosilicate thin films. Langmuir 23(12), 6737–6743 (2007)

    Article  Google Scholar 

  • H. Hattori, Anti-reflection surface with particle coating deposited by electrostatic attraction. Adv. Mater. 13(1), 51–54 (2001)

    Article  Google Scholar 

  • D. Lee, M. Rubner, R. Cohen, All-nanoparticle thin-film coatings. Nano Lett. 6(10), 2305–2312 (2006)

    Article  ADS  Google Scholar 

  • A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, V. Wittwer, Subwavelength-structured antireflective surfaces on glass. Thin Solid Films 351(1–2), 73–78 (1999)

    Article  ADS  Google Scholar 

  • M. Hawkeye, M. Brett, Glancing angle deposition: fabrication, properties, and applications of micro- and nanostructured thin films. J Vacuum Sci. Technol. A 25(5), 1317–1335 (2007)

    Article  Google Scholar 

  • J.-Q. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, S.-Y. Lin, W. Liu, J. Smart, Optical thin-film materials with low refractive index for broadband elimination of fresnel reflection. Nat. Photonics 1(3), 176–179 (2007)

    ADS  Google Scholar 

  • C. Bernhard, Structural and functional adaptation in a visual system. Endeavour 26(98), 79–84 (1967)

    Google Scholar 

  • S. Wilson, M. Hutley, The optical-properties of moth eye antireflection surfaces. Optica Acta 29(7), 993–1009 (1982)

    Article  ADS  Google Scholar 

  • P. Clapham, M. Hutley, Reduction of lens reflection by moth eye principle. Nature 244(5414), 281–282 (1973)

    Article  ADS  Google Scholar 

  • Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, B. Yang, Biomimetic surfaces for high-performance optics. Adv. Mater. 21(46), 4731–4734 (2009)

    Google Scholar 

  • T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, J. Spatz, Biomimetic interfaces for high-performance optics in the deep-uv light range. Nano Lett. 8(5), 1429–1433 (2008)

    Article  ADS  Google Scholar 

  • I. Parkin, R. Palgrave, Self-cleaning coatings. J. Mater. Chem. 15, 1689–1695 (2005)

    Article  Google Scholar 

  • X.-T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami, A. Fujishima, Self-cleaning particle coating with antireflection properties. Chem. Mat. 17(3), 696–700 (2005)

    Article  Google Scholar 

  • X. Zhang, A. Fujishima, M. Jin, A. Emeline, T. Murakami, Double-layered TiO\(_2\)-SiO\(_2\) nanostructured films with self-cleaning and antireflective properties. J. Phys. Chem. B 110(50), 25142–25148 (2006)

    Article  Google Scholar 

  • M. Faustini, L. Nicole, C. Boissiere, P. Innocenzi, C. Sanchez, D. Grosso, Hydrophobic, antireflective, self-cleaning, and antifogging sol-gel coatings: an example of multifunctional nanostructured materials for photovoltaic cells. Chem. Mater. 22(15), 4406–4413 (2010)

    Article  Google Scholar 

  • P. Hartmann, D.-K. Lee, B. Smarsly, J. Janek, Mesoporous TiO\(_2\): comparison of classical sol-gel and nanoparticle based photoelectrodes for the water splitting reaction. ACS Nano 4(6), 3147–3154 (2010)

    Article  Google Scholar 

  • “Terrestrial reference spectra for photovoltaic performance evaluation, g173–03”, American Society for Testing and Materials (ASTM). http://rredc.nrel.gov/solar/spectra/am1.5, (1999)

  • M. Templin, A. Franck, A. DuChesne, H. Leist, Y. Zhang, R. Ulrich, V. Schädler, U. Wiesner, Organically modified aluminosilicate mesostructures from block copolymer phases. Science 278(5344), 1795–1798 (1997)

    Article  ADS  Google Scholar 

  • M. Niederberger, M. Bartl, G. Stucky, Benzyl alcohol and titanium tetrachloride–a versatile reaction system for the nonaqueous and low-temperature preparation of crystalline and luminescent titania nanoparticles. Chem. Mater. 14(10), 4364–4370 (2002)

    Article  Google Scholar 

  • M. Rubinstein, R. Colby, Polymer Physics, 1st edn. (Oxford University Press, Oxford, 2003)

    Google Scholar 

  • H. Jaeger, S. Nagel, Physics of the granular state. Science 255(5051), 1523–1531 (1992)

    Article  ADS  Google Scholar 

  • J. Kobler, B. Lotsch, G. Ozin, T. Bein, Vapor-sensitive bragg mirrors and optical isotherms from mesoporous nanoparticle suspensions. ACS Nano 3(7), 1669–1676 (2009)

    Article  Google Scholar 

  • C. Lopez-Lopez, S. Colodrero, S. Raga, H. Lindstrom, F. Fabregat-Santiago, J. Bisquert, H. Míguez, Enhanced diffusion through porous nanoparticle optical multilayers. J. Mater. Chem. 22(5), 1751–1757 (2012)

    Article  Google Scholar 

  • L. Landstrom, D. Brodoceanu, N. Arnold, K. Piglmayer, D. Bäuerle, Photonic properties of silicon-coated colloidal monolayers. Appl. Phys. A-Mater. Sci. Process. 81(5), 911–913 (2005)

    Article  ADS  Google Scholar 

  • H.-Y. Hsueh, H.-Y. Chen, M.-S. She, C.-K. Chen, R.-M. Ho, S. Gwo, H. Hasegawa, E. Thomas, Inorganic gyroid with exceptionally low refractive index from block copolymer templating. Nano Lett. 10(12), 4994–5000 (2010)

    Article  ADS  Google Scholar 

  • M. Niederberger, Nonaqueous sol-gel routes to metal oxide nanoparticles. Acc. Chem. Res. 40(9), 793–800 (2007)

    Article  Google Scholar 

  • P. Tanev, M. Chibwe, T. Pinnavaia, Titanium-containing mesoporous molecular-sieves for catalytic-oxidation of aromatic-compounds. Nature 368(6469), 321–323 (1994)

    Article  ADS  Google Scholar 

  • F. Krebs, Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Solar Energ. Mater. Solar Cells 93(4), 394–412 (2009)

    Article  Google Scholar 

  • B.G. Kum, Y.C. Park, Y.J. Chang, J.Y. Jeon, H.M. Jang, Single-layered porous silica films on polyethylene terephthalate substrates for antireflection coatings. Thin Solid Films 519(11), 3778–3781 (2011)

    Article  ADS  Google Scholar 

  • T. Yanagishita, K. Nishio, H. Masuda, Anti-reflection structures on lenses by nanoimprinting using ordered anodic porous alumina. Appl. Phys. Express 2(2), 022001 (2009).

    Google Scholar 

  • K. Nakata, M. Sakai, T. Ochiai, T. Murakami, K. Takagi, A. Fujishima, Antireflection and self-cleaning properties of a moth-eye-like surface coated with TiO\(_2\) particles. Langmuir 27(7), 3275–3278 (2011)

    Article  Google Scholar 

  • P. Kohn, S. Guldin, U. Wiesner, U. Steiner, Crystal growth in block copolymer assembled TiO\(_2\) networks, in preparation

    Google Scholar 

  • Y. Paz, Z. Luo, L. Rabenberg, A. Heller, Photooxidative self-cleaning transparent titanium-dioxide films on glass. J. Mater. Res. 10(11), 2842–2848 (1995)

    Article  ADS  Google Scholar 

  • A. Mills, A. Lepre, N. Elliott, S. Bhopal, I. Parkin, S. O’Neill, Characterisation of the photocatalyst Pilkington Activ: a reference film photocatalyst? J. Photochem. Photobiol. A Chem. 160(3), 213–224 (2003)

    Article  Google Scholar 

  • H. Tang, K. Prasad, R. Sanjines, P. Schmid, F. Levy, Electrical and optical properties of TiO\(_2\) anatase thin-films. J. Appl. Phys. 75(4), 2042–2047 (1994)

    Article  ADS  Google Scholar 

  • B. Ohtani, Y. Ogawa, S. Nishimoto, Photocatalytic activity of amorphous-anatase mixture of titanium(IV) oxide particles suspended in aqueous solutions. J. Phys. Chem. B 101(19), 3746–3752 (1997)

    Article  Google Scholar 

  • H. Schmidt, H. Wolter, Organically modified ceramics and their applications. J. Non-Cryst. Solids 121(1–3), 428–435 (1990)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Guldin .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Guldin, S. (2013). Block Copolymer Assembled Antireflective Coatings with Self-Cleaning Properties. In: Inorganic Nanoarchitectures by Organic Self-Assembly. Springer Theses. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00312-2_10

Download citation

Publish with us

Policies and ethics