Skip to main content

Siderophore-Mediated Iron Acquisition: Target for the Development of Selective Antibiotics Towards Mycobacterium tuberculosis

  • Chapter
  • First Online:
Iron Acquisition by the Genus Mycobacterium

Part of the book series: SpringerBriefs in Molecular Science ((SB BIOMETALS))

  • 801 Accesses

Abstract

This chapter reviews recent pertinent literature on the Mycobacterium tuberculosis siderophore mycobactin and its excreted counterpart carboxymycobactin. Emphasis is placed on the design of antibiotics to specifically interfere with the biosynthesis of these siderophores and the use of siderophore analogs or conjugates to achieve inhibition of M. tuberculosis. Although the discussion is focused on biological activity of potential anti-tuberculosis agents, a brief description of the synthetic routes for compounds of interest is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization (2010) WHO REPORT 2010: Global Tuberculosis Control 1–205

    Google Scholar 

  2. Wright A, Bai G, Barrera L et al (2006) Emergence of Mycobacterium tuberculosis with extensive resistance to second-line drugs—worldwide (2000–2004). Morb Mortal Wkly Rep 55:301–305

    Google Scholar 

  3. Jones PB, Parrish NM, Houston TA et al (2000) A new class of antituberculosis agents. J Med Chem 43:3304–3314

    Article  PubMed  CAS  Google Scholar 

  4. Lenaerts AJ, Gruppo V, Marietta KS et al (2005) Preclinical testing of the nitroimidazopyran PA-824 for activity against Mycobacterium tuberculosis in a series of in vitro and in vivo models. Antimicrob Agents Chemother 49:2294–2301

    Article  PubMed  CAS  Google Scholar 

  5. Nikonenko BV, Protopopova M, Samala R et al (2007) Drug therapy of experimental tuberculosis (TB): improved outcome by combining SQ109, a new diamine antibiotic, with existing TB drugs. Antimicrob Agents Chemother 51:1563–1565

    Article  PubMed  CAS  Google Scholar 

  6. Parrish NM, Houston T, Jones PB et al (2001) In vitro activity of a novel antimycobacterial compound n-octanesulfonylacetamide, and its effects on lipid and mycolic acid synthesis. Antimicrob Agents Chemother 45:1143–1150

    Article  PubMed  CAS  Google Scholar 

  7. Protopopova M, Hanrahan C, Nikonenko B et al (2005) Identification of a new antitubercular drug candidate, SQ109, from a combinatorial library of 1,2-ethylenediamines. J Antimicrob Chemother 56:968–974

    Article  PubMed  CAS  Google Scholar 

  8. Stover CK, Warrener P, VanDevanter DR et al (2000) A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature 405:962–966

    Article  PubMed  CAS  Google Scholar 

  9. Tahlan K, Wilson R, Kastrinsky DB et al (2012) SQ109 targets MmpL3, a membrane transporter of trehalose monomycolate involved in mycolic acid donation to the cell wall core of Mycobacterium tuberculosis. Antimicrob Agents Chemother 56:1797–1809

    Article  PubMed  CAS  Google Scholar 

  10. Van den Boogaard J, Kibiki GS, Kisanga ER et al (2009) New drugs against tuberculosis: problems, progress, and evaluation of agents in clinical development. Antimicrob Agents Chemother 53:849–862

    Article  PubMed  Google Scholar 

  11. Vilchèze C, Baughn AD, Tufariello J et al (2011) Novel inhibitors of InhA efficiently kill Mycobacterium tuberculosis under aerobic and anaerobic conditions. Antimicrob Agents Chemother 55:3889–3898

    Article  PubMed  Google Scholar 

  12. Banin E, Lozinski A, Brady KM et al (2008) The potential of desferrioxamine-gallium as an anti-pseudomonas therapeutic agent. Proc Natl Acad Sci USA 105:16761–16766

    Article  PubMed  CAS  Google Scholar 

  13. Braun V, Pramanik A, Gwinner T et al (2009) Sideromycins: tools and antibiotics. Biometals 22:3–13

    Article  PubMed  CAS  Google Scholar 

  14. Chu BC, Garcia-Herrero A, Johanson TH et al (2010) Siderophore uptake in bacteria and the battle for iron with the host; a bird’s eye view. Biometals 23:601–611

    Article  PubMed  CAS  Google Scholar 

  15. Ji C, Juárez-Hernández RE, Miller MJ (2012) Exploiting bacterial iron acquisition: siderophore conjugates. Future Med Chem 4:297–313

    Article  PubMed  CAS  Google Scholar 

  16. Miethke M, Marahiel MA (2007) Siderophore-Based iron acquisition and pathogen control. Mol Biol Rev 71:413–451

    Article  CAS  Google Scholar 

  17. Kaneko Y, Thoendel M, Olakanmi O et al (2007) The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. J Clin Invest 117:877–888

    Article  PubMed  CAS  Google Scholar 

  18. Boukhalfa H, Crumbliss AL (2002) Chemical aspects of siderophore mediated iron transport. Biometals 15:325–339

    Article  PubMed  CAS  Google Scholar 

  19. Jurado RL (1997) Infections, and anemia of inflammation. Clin Infect Dis 25:888–895

    Article  PubMed  CAS  Google Scholar 

  20. Williams RJP (1990) An introduction to the nature of iron transport and storage. In: Ponka P, Schulman HM, Woodworth RC (eds) Iron transport and storage. CRC Press, Boca Raton

    Google Scholar 

  21. Andrews SC, Robinson AK, Rodríguez-Quiñones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237

    Article  PubMed  CAS  Google Scholar 

  22. Banerjee S, Farhana A, Ehtesham NZ et al (2011) Iron acquisition, assimilation and regulation in mycobacteria. Infect Genet Evol 11:825–838

    Article  PubMed  CAS  Google Scholar 

  23. Hider RC, Kong XL (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637–657

    Article  PubMed  CAS  Google Scholar 

  24. Raymond KN, Dertz EA (2004) Biochemical and physical properties of siderophores. In: Crosa JH, Mey AR, Payne SM (eds) Iron transport in bacteria. ASM Press, Washington, DC

    Google Scholar 

  25. Sandy M, Butler AA (2009) Microbial iron acquisition: marine and terrestrial siderophores. Chem Rev 109:4580–4595

    Article  PubMed  CAS  Google Scholar 

  26. Ji C, Miller PA, Miller MM (2010) Iron transport-mediated drug delivery: practical syntheses and in vitro antibacterial studies of tris-catecholate siderophore-aminopenicillin conjugates reveals selectively potent antipseudomonal activity. J Am Chem Soc 134:9898–9901

    Article  Google Scholar 

  27. Doorneweerd DD, Henne WA, Reifenberger RG et al (2010) Selective capture and identification of pathogenic bacteria using an immobilized siderophore. Langmuir 26:15424–15429

    Article  PubMed  CAS  Google Scholar 

  28. Inomata T, Eguchi H, Matsumoto K (2007) Adsorption of microorganisms onto an artificial siderophore-modified Au substrate. Biosens Bioelectron 22:751–755

    Article  Google Scholar 

  29. Snow GA (1965) Isolation and Structure of mycobactin T, a growth factor from Mycobacterium tuberculosis. Biochem J 97:166–175

    PubMed  CAS  Google Scholar 

  30. Snow GA (1970) Mycobactins: iron-chelating growth factors from mycobacteria. Bacteriol Rev 34:99–125

    PubMed  CAS  Google Scholar 

  31. Barry CE III, Boshoff H (2005) Getting the iron out. Nat Chem Biol 1:127–128

    Article  PubMed  CAS  Google Scholar 

  32. Luo M, Fadeev EA, Groves JT (2005) Mycobactin-mediated iron acquisition within macrophages. Nat Chem Biol 1:149–153

    Article  PubMed  CAS  Google Scholar 

  33. Gobin J, Horwitz MA (1996) Exochelins of Mycobacterium tuberculosis remove iron from human iron-binding proteins and donate iron to mycobactins in the M. tuberculosis cell wall. J Exp Med 183:1527–1532

    Article  PubMed  CAS  Google Scholar 

  34. Gobin J, Moore CH, Reeve JR Jr, Wong DK et al (1995) Iron acquisition by Mycobacterium tuberculosis: Isolation and characterization of a family of iron-binding exochelins. Proc Natl Acad Sci USA 92:5189–5193

    Article  PubMed  CAS  Google Scholar 

  35. Rodriguez GM (2006) Control of iron metabolism in Mycobacterium tuberculosis. Trends Microbiol 14:320–327

    Article  PubMed  CAS  Google Scholar 

  36. Quadri LEN (2008) Iron uptake in mycobacteria. In: Daffé M, Reyrat JM (eds) The mycobacterial cell envelope. ASM Press, Washington, DC

    Google Scholar 

  37. Rodriguez GM, Smith I (2006) Identification of an ABC transporter required for the iron acquisition and virulence in Mycobacterium tuberculosis. J Bacteriol 188:424–430

    Article  PubMed  CAS  Google Scholar 

  38. McCready KA, Ratledge C (1979) Ferrimycobactin Reductase Activity from Mycobacterium smegmatis. J Gen Microbiol 113:67–72

    Google Scholar 

  39. Brown KA, Ratledge C (1975) Iron transport in Mycobacterium smegmatis: ferrimycobactin reductase (NAD(P)H:ferrimycobactin oxidoreductase), the enzyme releasing iron from its carrier. FEBS Lett 53:262–266

    Article  PubMed  CAS  Google Scholar 

  40. Ratledge C (2004) Iron, mycobacteria and tuberculosis. Tuberculosis 84:110–130

    Google Scholar 

  41. Benz G, Schröder T, Kurz J et al (1982) Konstitution der Deferriform der Albomycine δ1, δ2 und ε. Ang Chem Int Ed 94:552–553

    CAS  Google Scholar 

  42. Clarke TE, Braun V, Winkelmann G et al (2002) X-ray crystallographic structures of the Escherichia coli periplasmic protein FhuD bound to hydroxamate-type siderophores and the antibiotic albomycin. J Biol Chem 277:13966–13972

    Article  PubMed  CAS  Google Scholar 

  43. Destoumieux-Garzón D, Thomas X, Santamaria M et al (2003) Microcin E492 antibacterial activity: evidence for a TonB-dependent inner membrane permeabilization on Escherichia coli. Mol Microbiol 49:1031–1041

    Article  PubMed  Google Scholar 

  44. Duquesne S, Destoumieux-Garzón D, Peduzzi J, Rebuffat S (2007) Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat Prod Rep 24:708–734

    Article  PubMed  CAS  Google Scholar 

  45. Lagos R, Wilkens M, Vergara C et al (1993) Microcin E492 forms ion channels in phospholipid bilayer membranes. FEBS Lett 321:145–148

    Article  PubMed  CAS  Google Scholar 

  46. Nolan EM, Fischbach MA, Koglin A et al (2007) Biosynthethic tailoring of microcin E492 m: post-translational modification affords an antibacterial siderophore-peptide conjugate. J Am Chem Soc 129:14336–14347

    Article  PubMed  CAS  Google Scholar 

  47. Vértesy L, Aretz W, Fehlhaber H-W et al (1995) Antibiotics from Streptomyces violaceus, DSM 8286, having a siderophor-aminoglycoside structure. Helv Chim Acta 78:46–60

    Article  Google Scholar 

  48. Dong L, Roosenberg JM II, Miller MJ (2002) Total synthesis of desferrisalmycin b. J Am Chem Soc 124:15001–15005

    Article  PubMed  CAS  Google Scholar 

  49. Roosenberg JM II, Miller MJ (2000) Total synthesis of the siderophore danoxamine. J Org Chem 65:4833–4838

    Article  PubMed  CAS  Google Scholar 

  50. Wencewicz TA (2011) Development of microbe-selective antibacterial agents: from small molecules to siderophores. Ph.D. Dissertation, University of Notre Dame, Notre Dame, IN

    Google Scholar 

  51. Wencewicz TA, Möllmann U, Long TE et al (2009) Is drug release necessary for antimicrobial activity of siderophore-drug conjugates? Syntheses and biological studies of the naturally occurring salmycin “Trojan Horse” antibiotics and synthetic desferridanoxamine-antibiotic conjugates. Biometals 22:633–648

    Article  PubMed  CAS  Google Scholar 

  52. Möllmann U, Dong L, Vértesy L et al (2004) Salmycins-natural siderophore-drug conjugates: prospects for modification and investigation based on successful total synthesis. Paper presented at the 2nd international Biometals symposium, Garmisch-Partenkirchen, Germany

    Google Scholar 

  53. Maurer PJ, Miller MJ (1983) Total Synthesis of a mycobactin: mycobactin S2. J Am Chem Soc 105:240–245

    Article  CAS  Google Scholar 

  54. Hu J, Miller MJ (1997) Total synthesis of mycobactin S, a siderophore and growth promoter of Mycobacterium smegmatis, and determination of its growth inhibitory activity against Mycobacterium tuberculosis. J Am Chem Soc 119:3462–3468

    Article  CAS  Google Scholar 

  55. Fennell KA, Möllmann U, Miller MJ (2008) Syntheses and biological activity of amamistatin b and analogs. J Org Chem 73:1018–1024

    Article  PubMed  CAS  Google Scholar 

  56. Miller MJ, Walz AJ, Zhu H et al (2011) Design, synthesis, and study of a mycobactin-artemisinin conjugate that has selective and potent activity against tuberculosis and malaria. J Am Chem Soc 133:2076–2079

    Article  PubMed  CAS  Google Scholar 

  57. Xu Y, Miller MJ (1998) Total syntheses of mycobactin analogs as potent antimycobacterial agents using a minimal protecting group strategy. J Org Chem 63:4314–4322

    Article  CAS  Google Scholar 

  58. Zhu H, Miller MJ (Unpublished work, 2013) University of Notre Dame, Notre Dame, IN

    Google Scholar 

  59. Walz AJ, Möllmann U, Miller MJ (2007) Synthesis and studies of catechol containing mycobactin S and T analogs. Org Biomol Chem 5:1621–1628

    Article  PubMed  CAS  Google Scholar 

  60. Schwynn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  Google Scholar 

  61. Juárez-Hernández RE (2012) Convergent approach for the syntheses of sideromycins: mycobactin T and gallioxamine B conjugates. Ph.D. Dissertation, University of Notre Dame, Notre Dame, IN

    Google Scholar 

  62. Juárez-Hernández RE, Franzblau SG, Miller MJ (2012) Syntheses of mycobactin analogs as potent and selective inhibitors of Mycobacterium tuberculosis. Org Biomol Chem 10:7584–7593

    Article  PubMed  Google Scholar 

  63. Moraski GC, Markley LD, Chang M et al (2012) Generation and exploration of new classes of antitubercular agents: the optimization of oxazolines, oxazoles, thiazolines, thiazoles to imidazo [1,2-a] pyridines and isomeric 5,6-fused scaffolds. Bioorg Med Chem Lett 20:2214–2220

    Article  CAS  Google Scholar 

  64. Moraski GC, Chang M, Villegas-Estrada A et al (2010) Structure-activity relationship of new antituberculosis agents derived from oxazoline and oxazole esters. Eur J Med Chem 45:1703–1716

    Article  PubMed  CAS  Google Scholar 

  65. Moraski GC, Franzblau SG, Miller MJ (2010) Utilization of the suzuki coupling to enhance the antituberculosis activity of aryloxazoles. Heterocycles 80:977–988

    Article  PubMed  CAS  Google Scholar 

  66. Moraski GC, Markley LD, Hipskind PA et al (2011) Advent of Imidazo[1,2-a]pyridine-3-carboxamides with Potent Multi- and Extended Drug Resistant Antituberculosis Activity. ACS Med Chem Lett 2:466–470

    Google Scholar 

  67. De Voss JJ, Rutter K, Schroeder BG et al (1999) Iron acquisition and metabolism by mycobacteria. J Bacteriol 181:4443–4451

    PubMed  Google Scholar 

  68. De Voss JJ, Rutter K, Schroeder BG et al (2000) The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc Natl Acad Sci USA 97:1252–1257

    Article  PubMed  Google Scholar 

  69. McMahon MD, Rush JS, Thomas MG (2012) Analyses of mycobactin TB, mycobactin TE, and mycobactin TF suggest revisions to the mycobactin biosynthesis pathway in Mycobacterium tuberculosis. J Bacteriol 194:2809–2818

    Article  PubMed  CAS  Google Scholar 

  70. Quadri LEN, Sello J, Keating TA et al (1998) Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. Chem Biol 5:631–645

    Article  PubMed  CAS  Google Scholar 

  71. Sieber SA, Marahiel MA (2005) Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chem Rev 105:715–738

    Article  PubMed  CAS  Google Scholar 

  72. Gulick AM, Lu X, Dunaway-Mariano D (2004) Crystal structure of 4-chlorobenzoate: CoA ligase/synthetase in the unliganded and aryl substrate-bound states. Biochemistry 43:8670–8679

    Article  PubMed  CAS  Google Scholar 

  73. Somu RV, Boshoff H, Qiao C et al (2006) Rationally designed nucleoside antibiotics that inhibit siderophore biosynthesis of Mycobacterium tuberculosis. J Med Chem 49:31–34

    Article  PubMed  CAS  Google Scholar 

  74. Finking R, Neumüller A, Solsbacher J et al (2003) Aminoacyl adenylate substrate analogues for the inhibition of adenylation domains of nonribosomal peptide synthetases. Chem Bio Chem 4:903–906

    Article  PubMed  CAS  Google Scholar 

  75. May JJ, Finking R, Wiegeshoff F et al (2005) Inhibition of the d-alanine: D-alanyl carrier protein ligase from Bacillus subtilis increases the bacterium’s susceptibility to antibiotics that target the cell wall. FEBS J 272:2993–3003

    Article  PubMed  CAS  Google Scholar 

  76. Ferreras JA, Ryu J-S, Di Lello F et al (2005) Small-molecule inhibition of siderophore biosynthesis in Mycobacterium tuberculosis and Yersinia pestis. Nat Chem Biol 1:29–32

    Article  PubMed  CAS  Google Scholar 

  77. Vannada J, Bennett EM, Wilson DJ et al (2006) Design, synthesis, and biological evaluation of β-ketosulfonamide adenylation inhibitors as potential antitubercular agents. Org Lett 8:4707–4710

    Article  PubMed  CAS  Google Scholar 

  78. Somu RV, Wilson DJ, Bennett EM et al (2006) Antitubercular nucleosides that inhibit siderophore biosynthesis: SAR of the glycosyl domain. J Med Chem 49:7623–7635

    Article  PubMed  CAS  Google Scholar 

  79. Neres J, Labello NP, Somu RV et al (2008) Inhibition of siderophore biosynthesis in Mycobacterium tuberculosis with nucleoside bisubstrate analogues: structure-activity relationships of the nucleobase domain of 5′-o-[n-(salicyl)sulfamoyl] adenosine. J Med Chem 51:5349–5370

    Article  PubMed  CAS  Google Scholar 

  80. Harrison AJ, Yu M, Gårdenborg T et al (2006) The structure of mycobactin TI from Mycobacterium tuberculosis, the first enzyme in the biosynthesis of the siderophore mycobactin, reveals it to be a salicylate synthase. J Bacteriol 188:6081–6091

    Article  PubMed  CAS  Google Scholar 

  81. Manos-Turvey A, Bulloch EMM, Rutledge PJ et al (2010) Inhibition Studies of Mycobacterium tuberculosis Salicylate Synthase (MbtI). ChemMedChem 5:1067–1079

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl E. Juárez-Hernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Juárez-Hernández, R.E., Zhu, H., Miller, M.J. (2013). Siderophore-Mediated Iron Acquisition: Target for the Development of Selective Antibiotics Towards Mycobacterium tuberculosis . In: Byers, B. (eds) Iron Acquisition by the Genus Mycobacterium. SpringerBriefs in Molecular Science(). Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00303-0_5

Download citation

Publish with us

Policies and ethics