Skip to main content

New Aspects of Collective Phenomena at Nanoscales in Quantum Plasmas

  • Conference paper
  • First Online:
Frontiers of Fundamental Physics and Physics Education Research

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 145))

  • 1649 Accesses

Abstract

We present two novel collective effects is quantum plasmas. First, we discuss novel attractive force between ions that are shielded by the degenerate electrons in quantum plasmas. Here we show that the electric potential around an isolated ion has a hard core negative part that resembles the Lennard-Jones (LJ)-type potential. Second, we present theory for stimulated scattering instabilities of electromagnetic waves off quantum plasma modes. Our studies are based on the quantum hydrodynamical description of degenerate electrons that are greatly influenced by electromagnetic and quantum forces. The relevance of our investigation to bringing ions closer for fusion in high-energy solid density plasmas at atomic dimensions, and for producing coherent short wavelength radiation in the x-ray regime at nanoscales are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shukla PK, Eliasson B (2010) Phys Usp 53:51

    Article  ADS  Google Scholar 

  2. Shukla PK, Eliasson B (2011) Rev Mod Phys 83:885

    Article  ADS  Google Scholar 

  3. Vladimirov SV, Tyshetskiy YuO (2011) Phys Usp 54:1243.

    Google Scholar 

  4. Haas F (2011) Quantum plasmas: an hydrodynamical approach. Springer, New York

    Book  Google Scholar 

  5. van Horn HM (1991) Science 252:384

    Article  ADS  Google Scholar 

  6. Fortov VE (2009) Phys Usp 52:615

    Article  ADS  Google Scholar 

  7. Schatzman E (1958) White dwarfs. Interscience Publishers, New York

    MATH  Google Scholar 

  8. Liebert J (1980) Ann Rev Astron Astrophys 18:363

    Article  ADS  Google Scholar 

  9. Shapiro SL, Teukolsky SL (1983) Black holes, White Dwarfs and neutron stars: the physics of compact objects. John Wiley & Sons, New York

    Book  Google Scholar 

  10. Abrahams AM, Shapiro SL (1991) Astrophys J 374:652

    Article  ADS  Google Scholar 

  11. Balberg S, Shapiro SL (2000) The Properties of Condensed Matter in White Dwarfs and Neutron. In: Levy M (ed) Stars. Academic, London

    Google Scholar 

  12. Lai D (2001) Rev Mod Phys 73:629

    Article  ADS  Google Scholar 

  13. Harding AK, Lai D (2006) Rep Prog Phys 69:2631

    Article  ADS  Google Scholar 

  14. Glenzer SH, Landen OL, Neumayer P et al (2007) Phys Rev Lett 98:065002

    Article  ADS  Google Scholar 

  15. Murillo MS (2010) Phys Rev E 81:036403

    Article  ADS  Google Scholar 

  16. Chapman DA, Gericke DO (2011) Phys Rev Lett 107:165004

    Article  ADS  Google Scholar 

  17. Kremp D et al (1999) Phys Rev E 60:4725

    Article  ADS  Google Scholar 

  18. Eliezer S, Norreys P, Mendonça JT, Lancaster K (2005) Phys Plasmas 12:052115

    Article  ADS  Google Scholar 

  19. Malkin VM, Fisch NJ, Wurtele JS (2007) Phys Rev E 75:026404

    Article  ADS  Google Scholar 

  20. Azechi H et al (1991) Laser Part Beams 9:193

    Article  ADS  Google Scholar 

  21. Kodama R et al. (2001) Nature 412:798 (London).

    Google Scholar 

  22. Glenzer S, Redmer R (2009) Rev Mod Phys 81:1625

    Article  ADS  Google Scholar 

  23. Redmer R, Röpke G (2010) Contrib Plasma Phys 50:970

    Article  ADS  Google Scholar 

  24. Kritcher AL, Neumayer P, Castor J et al (2008) Science 322:69

    Article  ADS  Google Scholar 

  25. Markowich PA et al (1990) Semiconductor equations. Springer, Berlin

    Book  MATH  Google Scholar 

  26. Crouseilles N et al (2008) Phys Rev B 78:155412

    Article  ADS  Google Scholar 

  27. Landau LD, Lifshitz EM (1980) Statistical physics. Butterworth-Heinemann, Oxford

    Google Scholar 

  28. Chandrasekhar S (1935) Mon Not R Astron Soc 113:667

    ADS  MathSciNet  Google Scholar 

  29. Chandrasekhar S (1939) An introduction to the study of stellar structure. Chicago University Press, Chicago

    Google Scholar 

  30. Chandrasekhar S (1984) Science 226:4674

    Article  Google Scholar 

  31. Salpeter EE (1961) Astrophys J 134:669

    Article  ADS  MathSciNet  Google Scholar 

  32. Wilhelm HL (1971) Z. Physik 241:1

    Article  ADS  Google Scholar 

  33. Gardner CL, Ringhofer C (1996) Phys Rev E 53:157

    Article  ADS  Google Scholar 

  34. Manfredi G, Haas F (2001) Phys Rev B 64:075316

    Article  ADS  Google Scholar 

  35. Manfredi G (2005) Fields Inst Commun 46:263

    MathSciNet  Google Scholar 

  36. Tsintsadze NL, Tsintsadze LN (2009) EPL 88:35001

    Article  ADS  Google Scholar 

  37. Mendonça JT (2011) Phys Plasmas 18:062101

    Article  ADS  Google Scholar 

  38. Brey L et al (1990) Phys Rev B 42:1240

    Article  ADS  Google Scholar 

  39. Hedin L, Lundqvist BI (1971) J Phys C Solid State Phys 4:2064

    Article  ADS  Google Scholar 

  40. Shukla PK (2009) Nature Phys 5:92

    Article  ADS  Google Scholar 

  41. Shukla PK, Eliasson B (2012) Phys Rev Lett 108:219902

    Article  ADS  Google Scholar 

  42. Shukla PK, Eliasson B (2012) Phys Rev Lett 108:165007

    Article  ADS  Google Scholar 

  43. Atrazhev VM, Iakubov IT (1995) Phys Plasmas 2:2624

    Article  ADS  Google Scholar 

  44. Frenkel YI (1946) Kinetic theory of liquids. Clarendon, Oxford

    MATH  Google Scholar 

  45. Ichimaru S, Tanaka S (1986) Phys Rev Lett 56:2815

    Article  ADS  Google Scholar 

  46. Tanaka S, Ichimaru S (1987) Phys Rev A 35:4743

    Article  ADS  Google Scholar 

  47. Ichimaru S, Iyetomi H, Tanaka S (1987) Phys Rep 149:91

    Article  ADS  Google Scholar 

  48. Berkovsky MA (1992) Phys Lett A 166:365

    Article  ADS  Google Scholar 

  49. Ichimaru S (1994) Statistical plasma physics: condensed plasmas. Addison Wesley, New York

    Google Scholar 

  50. Kaw PK, Sen A (1998) Phys Plasmas 10:3552

    Article  ADS  Google Scholar 

  51. Rao NN, Shukla PK, Yu MY (1990) Planet Space Sci 38:543

    Article  ADS  Google Scholar 

  52. Shukla PK, Eliasson B (2008) Phys Lett A 372:2897

    Article  ADS  MATH  Google Scholar 

  53. Kittel C (1986) Introduction to solid state physics. John Wiley & Sons Inc, New York p 83

    Google Scholar 

  54. Kruer WL (1973) The physics of laser plasma interactions. Addison-Wesley Publishing Company, Redwood City

    Google Scholar 

  55. Shukla PK, Rao NN, Yu MY, Tsintsadze NL (1986) Phys Rep 138:1

    Article  ADS  Google Scholar 

  56. Stenflo L (1976) Phys Scr 14:320

    Article  ADS  Google Scholar 

  57. Yan YT, Dawson JM (1986) Phys Rev Lett 57:1599

    Article  ADS  Google Scholar 

  58. Huang Z, Kim K-J (2007) Phys Rev ST Accel Beams 10:034801

    Article  ADS  Google Scholar 

  59. Eliasson B, Shukla PK (2012) Phys Rev E 85:065401(R)

    Article  ADS  Google Scholar 

  60. Shukla PK, Stenflo L (2006) Phys Plasmas 13:044505

    Article  ADS  Google Scholar 

  61. Shukla PK, Eliasson B (2007) Phys Rev Lett 99:096401

    Article  ADS  Google Scholar 

  62. Shukla PK, Eliasson B, Stenflo L (2012) Phys Plasmas 19 (submitted).

    Google Scholar 

  63. Allen L, Beijersbergen MW, Spereeuw RJC, Woerdman JP (1992) Phys Rev A 45:8185

    Article  ADS  Google Scholar 

  64. Mendonça JT, Thide B, Then H (2009) Phys Rev Lett 102:185005

    Article  ADS  Google Scholar 

  65. Yu MY, Spatschek KH, Shukla PK, Naturforsch Z (1974) A 29:1736

    Google Scholar 

  66. Shukla PK, Yu MY, Spatschek KH (1975) Phys Fluids 18:265

    Article  ADS  Google Scholar 

  67. Murtaza G, Shukla PK (1984) J Plasma Phys 31:423

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft through the project SH21/3-2 of the Research Unit 1048. The authors thank Lennart Stenflo and Massoud Akbari-Moghanjoughi for useful discussions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Shukla, P.K., Eliasson, B. (2014). New Aspects of Collective Phenomena at Nanoscales in Quantum Plasmas. In: Sidharth, B., Michelini, M., Santi, L. (eds) Frontiers of Fundamental Physics and Physics Education Research. Springer Proceedings in Physics, vol 145. Springer, Cham. https://doi.org/10.1007/978-3-319-00297-2_26

Download citation

Publish with us

Policies and ethics