Skip to main content

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 145))

Abstract

Some 75 years ago, the concept of dark matter was introduced by Zwicky to explain the anomaly of galactic rotation curves, though there is no clue to its identity or existence to date. In 1997, the author had introduced a model of the universe which went diametrically opposite to the existing paradigm which was a dark matter assisted decelarating universe. The new model introduces a dark energy driven accelarating universe though with a small cosmological constant. The very next year this new picture was confirmed by the Supernova observations of Perlmutter, Riess and Schmidt. These astronomers got the 2011 Nobel Prize for this dramatic observation. All this is discussed briefly, including the fact that dark energy may obviate the need for dark matter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cercignani C, Galgani L, Scotti A (1972) Phys Lett 38A:403

    Article  ADS  Google Scholar 

  2. Cercignani C (1998) Found. Phys Lett 11(2):189–199

    Article  MathSciNet  Google Scholar 

  3. Hayakawa S (1965) Suppl of PTP commemmorative issue pp. 532–541.

    Google Scholar 

  4. Huang K (1975) Statistical Mechanics. Wiley Eastern, New Delhi, pp. 75ff.

    Google Scholar 

  5. Linde AD (1982) Phys Lett 108B:389

    Article  ADS  MathSciNet  Google Scholar 

  6. Melnikov VN (1994) Int J Theor Phys 33(7):1569–1579

    Article  Google Scholar 

  7. Nicolis G, Prigogine I (1989) Exploring complexity. Freeman, New York, W.H

    Google Scholar 

  8. Nottale L (1993) Fractal space-time and microphysics: towards a theory of scale relativity. World Scientific, Singapore

    Book  MATH  Google Scholar 

  9. Reif F (1965) Fundamentals of statistical and thermal physics. McGraw-Hill Book Co., Singapore

    Google Scholar 

  10. Rosen N (1993) Int J Theor Phys 32(8):1435–1440

    Article  Google Scholar 

  11. Ruffini R, Zang LZ (1983) Basic concepts in relativistic astrophysics. World Scientific, Singapore, p. 111ff.

    Google Scholar 

  12. Science, December 1998.

    Google Scholar 

  13. Science, December 2003.

    Google Scholar 

  14. Sidharth BG (1998a) Int J Mod Phys A 13(15):2599ff.

    Google Scholar 

  15. Sidharth BG (1998b) Int J Theor Phys 37(4):1307–1312

    Article  MATH  Google Scholar 

  16. Sidharth BG (1998c) Frontiers of quantum physics (1997) Lim SC et al. (eds.) Springer Verlag, Singapore.

    Google Scholar 

  17. Sidharth BG (1999) Proceeding of the eighth marcell grossmann meeting on general relativity (1997) Piran T (ed.) World Scientific, Singapore, pp. 476–479.

    Google Scholar 

  18. Sidharth BG (2001) Chaotic universe: from the planck to the hubble scale. Nova Science, New York

    Google Scholar 

  19. Sidharth BG (2002) Found. Phys Lett 15(6):577–583

    Article  MathSciNet  Google Scholar 

  20. Sidharth BG (2003) Chaos Solitons Fractals 16(4):613–620

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Sidharth BG (2007) Encounters: abdus salam in new advances. Physics 1(1):1–17

    MathSciNet  Google Scholar 

  22. Sidharth BG (2008) The thermodynamic universe. World Scientific, Singapore

    Book  Google Scholar 

  23. Sidharth BG (2010) Int J Theor Phys 49(10):2476–2485

    Article  MATH  Google Scholar 

  24. Singh J (1961) Great ideas and theories of modern cosmology. Dover, New York, pp. 168ff.

    Google Scholar 

  25. Tryon EP (1973) Is the universe a vacuum fluctuation? Nature 246:396–397

    Article  ADS  Google Scholar 

  26. Weinberg S (1972) Gravitation and cosmology. Wiley, New York, p. 61ff.

    Google Scholar 

  27. Weinberg S (1979) Phys Rev Lett 43:1566

    Article  ADS  Google Scholar 

  28. Zee A (1982) Unity of forces in the universe (Vol. II). World Scientific, Singapore, p. 40ff.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Sidharth, B.G. (2014). The Dark Energy Universe. In: Sidharth, B., Michelini, M., Santi, L. (eds) Frontiers of Fundamental Physics and Physics Education Research. Springer Proceedings in Physics, vol 145. Springer, Cham. https://doi.org/10.1007/978-3-319-00297-2_25

Download citation

Publish with us

Policies and ethics