Skip to main content

Experimental Tests of Quantum Mechanics: Pauli Exclusion Principle and Spontaneous Collapse Models

  • Conference paper
  • First Online:
  • 1645 Accesses

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 145))

Abstract

The Pauli exclusion principle (PEP), as a consequence or the spin-statistics connection, is one of the basic principles of the modern physics. Being at the very basis of our understanding of matter, it spurs a lively debate on its possible limits, deeply rooted as it is in the very foundations of Quantum Field Theory. The VIP (VIolation of the Pauli exclusion principle) experiment is searching for a possible small violation of the PEP for electrons, using the method of searching for Pauli Exclusion Principle forbidden atomic transitions in copper. We describe the experimental method and the obtained results; we briefly present future plans to go beyond the actual limit by upgrading the experiment using vetoed new spectroscopic fast Silicon Drift Detectors. We also mention the possibility of using a similar experimental technique to search for possible X-rays generated in the spontaneous collapse models of quantum mechanics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pauli W (1949) Phys Rev 58:716

    Article  ADS  Google Scholar 

  2. Luders G, Zumino B (1958) Phys Rev 110:1450–1453

    Article  ADS  MathSciNet  Google Scholar 

  3. Feynman RP, Leighton RB, Sands M (1963) The Feynman lectures on physics. Addison-Wesley, Reading.

    Google Scholar 

  4. Bernabei R et al (1997) Phys Lett B 408:439

    Article  ADS  Google Scholar 

  5. Back HO et al (2005) Eur Phys J C37:421–431

    ADS  Google Scholar 

  6. Hilborn RC, Yuca CL (1996) Phys Rev Lett 76:2844–2847

    Article  ADS  Google Scholar 

  7. Nemo Colaboration (2000) Nucl Phys B (Proc Suppl) 87:510–511

    Article  ADS  Google Scholar 

  8. Nolte E et al (1991) J Phys G Nucl Part Phys 17:S355

    Article  ADS  Google Scholar 

  9. Tsipenyuk Y, Barabash A, Kornoukhov V, Chapyzhnikov B (1998) Phys Chem 51:507

    ADS  Google Scholar 

  10. Ramberg E, Snow GA (1990) Phys Lett B 238:438

    Article  ADS  Google Scholar 

  11. Yu Ignatiev A, Kuzmin VA (1987) Yad Fiz 46:786.

    Google Scholar 

  12. The VIP proposal, LNF-LNGS Proposal, september, 2004, http://www.lnf.infn.it/esperimenti/vip

  13. Culhane JL (1990) Nucl Instrum Methods A 310:1

    Article  ADS  Google Scholar 

  14. Egger JP, Chatellard D, Jeannet E (1993) Particle World 3:139

    Google Scholar 

  15. Fiorucci G et al (1990) Nucl Instrum Methods A 292:141

    Article  ADS  Google Scholar 

  16. Varidel D et al (1990) Nucl Instrum Methods A 292:147

    Article  ADS  Google Scholar 

  17. Kraft RP et al (1995) Nucl Instrum Methods A 372:372

    Article  ADS  Google Scholar 

  18. di Matteo S, Sperandio L (2006) VIP Note, IR-04, 26 April 2006; the energy shift has been computed by Indelicato P, private communication.

    Google Scholar 

  19. Ishiwatari T et al (2004) Phys Lett B 593:48

    Article  ADS  Google Scholar 

  20. Beer G et al (2005) Phys Rev Lett 94:212302

    Article  ADS  Google Scholar 

  21. Ishiwatari T et al (2006) Nucl Instrum Methods Phys Res A 556:509

    Article  ADS  Google Scholar 

  22. Bartalucci S (VIP Collaboration) et al. (2006) Phys Lett B 641:18.

    Google Scholar 

  23. Bazzi M et al (2009) Phys Lett B 681:310

    Article  ADS  Google Scholar 

  24. Ghirardi GC, Rimini A, Weber T (1986) Phys Rev D 34:470

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Ghirardi GC, Rimini A, Weber T (1987) Phys Rev 3287:470

    Google Scholar 

  26. Ghirardi GC, Rimini A, Weber T (1988) Found Phys 18:1

    Article  ADS  MathSciNet  Google Scholar 

  27. Pearle P (1990) Phys Rev A 39:2277

    Article  ADS  MathSciNet  Google Scholar 

  28. Ghirardi GC, Pearle P, Rimini A (1990) Phys Rev A 42:78

    Article  ADS  MathSciNet  Google Scholar 

  29. Bassi A (2007) J Phys 67(2007):012013

    Google Scholar 

  30. Fu Q (1997) Phys Rev A 56:1806

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The VIP Collaboration wishes to thank all the LNGS laboratory staff for the precious help and assistance during all phases of preparation, installation and data taking. The support from the HadronPhysics2 FP7 (227431), from the MIUR PRIN2008 2008LH2X28_004 and from COST1006, Fundamental Problems in Quantum Physics projects is acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Petrascu, C.C. et al. (2014). Experimental Tests of Quantum Mechanics: Pauli Exclusion Principle and Spontaneous Collapse Models. In: Sidharth, B., Michelini, M., Santi, L. (eds) Frontiers of Fundamental Physics and Physics Education Research. Springer Proceedings in Physics, vol 145. Springer, Cham. https://doi.org/10.1007/978-3-319-00297-2_18

Download citation

Publish with us

Policies and ethics