Skip to main content

Ekman Layers of Rotating Fluids with Vanishing Viscosity between Two Infinite Parallel Plates

  • Conference paper
  • 1715 Accesses

Part of the book series: Studies in Computational Intelligence ((SCI,volume 479))

Abstract

In this paper, we prove the convergence of weak solutions of fast rotating fluids between two infinite parallel plates towards the two-dimensional limiting system. We also put in evidence the existence of Ekman boundary layers when Dirichlet boundary conditions are imposed on the domain.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babin, A., Mahalov, A., Nicolaenko, B.: Global Splitting, Integrability and Regularity of 3D Euler and Navier-Stokes Equations for Uniformly Rotating Fluids. European Journal of Mechanics 15, 291–300 (1996)

    MathSciNet  MATH  Google Scholar 

  2. Babin, A., Mahalov, A., Nicolaenko, B.: Global regularity of 3D rotating Navier-Stokes equations for resonant domains. Indiana University Mathematics Journal 48, 1133–1176 (1999)

    MathSciNet  MATH  Google Scholar 

  3. Bony, J.-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Annales de l’École Normale Supérieure 14, 209–246 (1981)

    MathSciNet  MATH  Google Scholar 

  4. Brezis, H., Gallouet, T.: Nonlinear Schrödinger evolution equations. Nonlinear Analysis 4(4), 677–681 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chemin, J.-Y.: Fluides parfaits incompressibles. Astérisque 230 (1995)

    Google Scholar 

  6. Chemin, J.-Y., Desjardins, B., Gallagher, I., Grenier, E.: Anisotropy and dispersion in rotating fluids. Nonlinear Partial Differential Equations and their Application, Collège de France Seminar, Studies in Mathematics and its Applications 31, 171–191 (2002)

    MathSciNet  Google Scholar 

  7. Chemin, J.-Y., Desjardins, B., Gallagher, I., Grenier, E.: Fluids with anisotropic viscosity, Special issue for R. Temam’s 60th birthday. M2AN. Mathematical Modelling and Numerical Analysis 34(2), 315–335 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chemin, J.-Y., Desjardins, B., Gallagher, I., Grenier, E.: Ekman boundary layers in rotating fluids. ESAIM Controle Optimal et Calcul des Variations, A tribute to J.-L. Lions 8, 441–466 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chemin, J.-Y., Desjardins, B., Gallagher, I., Grenier, E.: Mathematical Geophysics: An introduction to rotating fluids and to the Navier-Stokes equations. Oxford University Press (2006)

    Google Scholar 

  10. Cushman-Roisin, B.: Introduction to geophysical fluid dynamics. Prentice-Hall (1994)

    Google Scholar 

  11. Embid, E., Majda, A.: Averaging over fast gravity waves for geophysical flows with arbitrary potential vorticity. Communications in Partial Differential Equations 21, 619–658 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fujita, H., Kato, T.: On the Navier-Stokes initial value problem I. Archiv for Rational Mechanic Analysis 16, 269–315 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gallagher, I.: Applications of Schochet’s Methods to Parabolic Equation. Journal de Mathématiques Pures et Appliquées 77, 989–1054 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gallagher, I., Saint-Raymond, L.: Weak convergence results for inhomogeneous rotating fluid equations. Journal d’Analyse Mathématique 99, 1–34 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Grenier, E.: Oscillatory perturbations of the Navier-Stokes equations. Journal de Mathématiques Pures et Appliquées 76, 477–498 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grenier, E., Masmoudi, N.: Ekman layers of rotating fluid, the case of well prepared initial data. Communications in Partial Differential Equations 22(5-6), 953–975 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Leray, J.: Essai sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Matematica 63, 193–248 (1933)

    Article  MathSciNet  Google Scholar 

  18. Masmoudi, N.: Ekman layers of rotating fluids: the case of general initial data. Communications on Pure and Applied Mathematics 53(4), 432–483 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ngo, V.-S.: Rotating Fluids with small viscosity. International Mathematics Research Notices IMRN (10), 1860–1890 (2009)

    Google Scholar 

  20. Ngo, V.-S.: Rotating fluids with small viscosity - The case of ill-prepared data (submitted)

    Google Scholar 

  21. Paicu, M.: Equation anisotrope de Navier-Stokes dans des espaces critiques. Revista Matemática Iberoamericana 21(1), 179–235 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pedlosky, J.: Geophysical fluid dynamics. Springer (1979)

    Google Scholar 

  23. Schmitz, W.J.: Weakly depth-dependent segments of the North Atlantic circulation. Journal of Marine Research 38, 111–133

    Google Scholar 

  24. Schochet, S.: Fast singular limits of hyperbolic PDEs. Journal of Differential Equations 114, 476–512 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yudovitch, V.: Non stationnary flows of an ideal incompressible fluid. Zh. Vych. Math. 3, 1032–1066 (1963)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van-Sang Ngo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Ngo, VS. (2013). Ekman Layers of Rotating Fluids with Vanishing Viscosity between Two Infinite Parallel Plates. In: Nguyen, N., van Do, T., le Thi, H. (eds) Advanced Computational Methods for Knowledge Engineering. Studies in Computational Intelligence, vol 479. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00293-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00293-4_15

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00292-7

  • Online ISBN: 978-3-319-00293-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics