Skip to main content

Technologies for Power Generation in Rural Contexts

  • Chapter
  • First Online:
Renewable Energy for Unleashing Sustainable Development

Abstract

Overcoming poverty requires self-sustained economic growth. Energy, and particularly electricity, is essential for setting up small businesses which serve the local market. Building enterprises and creating new jobs are the only sustainable means of lifting people out of poverty. In this context, energy is an instrumental right to achieve the MDGs. And particularly, according to the 2011 World Energy Outlook [1], Renewable Energy Technologies (RETs) must play a prominent role in the challenge of implementing and developing sustainable energy markets. Energy supply that is only sufficient for lighting and cooking at household level (i.e. basic energy needs) and social services (health, education, etc.) is a step in the right direction. However, a stable power supply, which can be used for economic activities, provides opportunities for productive uses of energy and income generation, and therefore, lead to the creation of sustainable (energy) markets. Hence, enhancing education, reducing isolation, implementing safety measures, improving healthcare, preventing natural disasters, fostering productivity are only some of the benefits brought by the access to electricity in rural areas. Four major Renewable Energy Technologies, and most diffused storage systems will be described along this chapter. A brief description of resources assessment methodologies, an overview of main components and layouts, and some considerations about capital costs, Levelized Cost of Energy (LCOE), and impact are given for each RET. Moreover, hybrid systems’ main layouts and configurations are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IEA (2011) World energy outlook 2011. OECD/IEA, Paris

    Google Scholar 

  2. Šúri M, Huld TA, Dunlop ED (2005) PV-GIS: a web-based solar radiation database for the calculation of PV potential in Europe. Int J Sustain Energ 24:55–67

    Article  Google Scholar 

  3. Ĺ Ăşri M, Huld T, Dunlop E et al (2006) Online data and tools for estimation of solar electricity in Africa: the PVGIS approach. In: 21st European photovoltaic solar energy conference and exhibition

    Google Scholar 

  4. PVGIS (2012) Photovoltaic geographical information system. http://re.jrc.ec.europa.eu/pvgis/

  5. IRENA (2012) Global atlas for solar & wind. www.irena.org/globalatlas/

  6. IRENA (2012) Implementation strategy for a global solar and wind atlas

    Google Scholar 

  7. Paulescu M, Paulescu E, Gravila P, Badescu V (2013) Weather modeling and forecasting of PV systems operation. doi:10.1007/978-1-4471-4649-0

  8. Farret FA, Simoes MG (2006) Integration of alternative sources of energy. Wiley-Interscience, Hoboken

    Google Scholar 

  9. Rolland S, Glania G (2011) Hybrid mini-grids for rural electrification: lessons learned. Alliance for Rural Electrification, Brussels

    Google Scholar 

  10. Rolland S (2011) Rural electrification with renewable energy. Alliance for Rural Electrification, Brussells

    Google Scholar 

  11. Reiche K, GrĂĽner R, Attigah B et al (2010) What difference can a PicoPV system make? Deutsche Gesellschaft, Eschborn, German

    Google Scholar 

  12. Chaurey A, Kandpal TC (2010) A techno-economic comparison of rural electrification based on solar home systems and PV microgrids. Energy Policy 38:3118–3129. doi:http://dx.doi.org/10.1016/j.enpol.2010.01.052

    Google Scholar 

  13. Bhattacharyya SC (2013) Rural electrification Through decentralised off-grid systems in developing countries. Springer, London

    Google Scholar 

  14. Sriuthaisiriwong Y, Kumar S (2001) Rural electrification using photovoltaic battery charging stations: a performance study in northern Thailand. Prog Photovoltaics Res Appl 9:223–234. doi:10.1002/pip.364

    Article  Google Scholar 

  15. Gaillard L, Schroeter A (2009) Solar recharging stations: selling hours of solar lighting. In: 2009 1st International conference on the developements in renewable energy technology (ICDRET). IEEE, pp 1–5

    Google Scholar 

  16. Raman P, Murali J, Sakthivadivel D, Vigneswaran VS (2012) Opportunities and challenges in setting up solar photo voltaic based micro grids for electrification in rural areas of India. Renew Sustain Energy Rev 16:3320–3325. doi:http://dx.doi.org/10.1016/j.rser.2012.02.065

  17. ESMAP (2007) Technical and economic assessment of off-grid, mini-grid and grid electrification technologies. The international bank for reconstruction and development/THE WORLD BANK, Washington, DC, USA

    Google Scholar 

  18. IRENA Secretariat, Abu Dhabi, United Arab Emirates

    Google Scholar 

  19. REN21 (2012) Renewables 2012 global status report. REN21 Secretariat, Paris, France

    Google Scholar 

  20. Peng J, Lu L, Yang H (2013) Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems. Renew Sustain Energy Rev 19:255–274. doi:10.1016/j.rser.2012.11.035

    Article  Google Scholar 

  21. Raadal HL, Gagnon L, Modahl IS, Hanssen OJ (2011) Life cycle greenhouse gas (GHG) emissions from the generation of wind and hydro power. Renew Sustain Energy Rev 15:3417–3422. doi:10.1016/j.rser.2011.05.001

    Article  Google Scholar 

  22. SunTechnics. http://suntechnics.com/

  23. Piggott H (2001) PMG construction manual. The schumacher centre for technology and development, Bourton Hall, UK, pp 1–49

    Google Scholar 

  24. Piggott H (2013) A wind turbine recipe book. Scoraig Wind, Dundonnell, UK

    Google Scholar 

  25. Podmore R, Larsen R, Louie H et al (2012) Affordable energy solutions for developing communities. In: 2012 IEEE PES T&D conference and exposition

    Google Scholar 

  26. Soe AK, Swe W (2011) Construction and performance testing of small-scale wind power system. World Acad Sci Eng Technol 51:156–160

    Google Scholar 

  27. Joselin Herbert GM, Iniyan S, Sreevalsan E, Rajapandian S (2007) A review of wind energy technologies. Renew Sustain Energy Rev 11:1117–1145. doi:10.1016/j.rser.2005.08.004

    Article  Google Scholar 

  28. Landberg L, Myllerup L, Rathmann O et al (2003) Wind resource estimation—an overview. Wind Energy 6:261–271. doi:10.1002/we.94

    Article  Google Scholar 

  29. Strong SJ (2008) Design of a small wind turbine. University of Southern Queensland, Faculty of Engineering and Surveying, Toowoomba, Australia

    Google Scholar 

  30. Renewable UK (2010) small wind systems. RenewableUK, London, UK

    Google Scholar 

  31. AWEA (2009) Small wind turbine global market study. AWEA, Washington, DC, USA

    Google Scholar 

  32. IRENA (2012) Cost analysis of wind power. IRENA Secretariat, Abu Dhabi, United Arab Emirates

    Google Scholar 

  33. Practical Acition (2002) Micro-hydro power. The Schumacher Centre, Bourton-on-Dunsmore, UK

    Google Scholar 

  34. World meteorological organization infohydro. http://www.wmo.int/pages/prog/hwrp/INFOHYDRO/infohydro_index.php

  35. FAO local climate estimator. http://www.fao.org/NR/climpag/pub/en3_051002_en.asp

  36. ESHA (2004) Guide on how to develop a small hydropower plant. European Small Hydropower Association, Brussels

    Google Scholar 

  37. Haidar AMA, Senan MFM, Noman A, Radman T (2012) Utilization of pico hydro generation in domestic and commercial loads. Renew Sustain Energy Rev 16:518–524. doi:10.1016/j.rser.2011.08.017

  38. Derakhshan S, Nourbakhsh A (2008) Experimental study of characteristic curves of centrifugal pumps working as turbines in different specific speeds. Exp Thermal Fluid Sci 32:800–807. doi:10.1016/j.expthermflusci.2007.10.004

    Article  Google Scholar 

  39. Yang S–S, Derakhshan S, Kong F-Y (2012) Theoretical, numerical and experimental prediction of pump as turbine performance. Renew Energy 48:507–513. doi:10.1016/j.renene.2012.06.002

    Article  Google Scholar 

  40. Ramos H, Borga A (1999) Pumps as turbines: an unconventional solution to energy production. Urban Water 1:261–263

    Article  Google Scholar 

  41. Paish O (2002) Small hydro power: technology and current status. Renew Sustain Energy Rev 6:537–556

    Article  Google Scholar 

  42. Mishra S, Singal SK, Khatod DK (2011) Optimal installation of small hydropower plant—A review. Renew Sustain Energy Rev 15:3862–3869. doi:10.1016/j.rser.2011.07.008

    Article  Google Scholar 

  43. Singal SK, Saini RP, Raghuvanshi CS (2010) Analysis for cost estimation of low head run-of-river small hydropower schemes. Energy Sustain Dev 14:117–126. doi:10.1016/j.esd.2010.04.001

    Article  Google Scholar 

  44. Ogayar B, Vidal PG (2009) Cost determination of the electro-mechanical equipment of a small hydro-power plant. Renew Energy 34:6–13. doi:10.1016/j.renene.2008.04.039

    Article  Google Scholar 

  45. Aggidis GA, Luchinskaya E, Rothschild R, Howard DC (2010) The costs of small-scale hydro power production: impact on the development of existing potential. Renew Energy 35:2632–2638. doi: 10.1016/j.renene.2010.04.008

    Google Scholar 

  46. Kusakana K (2008) Economic and environmental analysis of micro hydropower system for rural power supply. In: 2nd IEEE International Conference on Power and Energy (PECon 08), Dec 1–3, 2008, Johor Baharu, Malaysia

    Google Scholar 

  47. Khennas S, Barnett A (2000) Best practices for sustainable development of micro hydropower in developing countries. ITDG, London

    Google Scholar 

  48. IRENA (2012) Cost analysis of hydropower. IRENA Secretariat, Abu Dhabi, United Arab Emirates

    Google Scholar 

  49. Duku MH, Gu S, Hagan EB (2011) A comprehensive review of biomass resources and biofuels potential in Ghana. Renew Sustain Energy Rev 15:404–415. doi: 10.1016/j.rser.2010.09.033

  50. Mondal MAH, Denich M (2010) Assessment of renewable energy resources potential for electricity generation in Bangladesh. Renew Sustain Energy Rev 14:2401–2413. doi:10.1016/j.rser.2010.05.006

    Article  Google Scholar 

  51. Baruah DC, Hiloidhari M (2013) Biomass assessment for growth of bioenergy: a case study in Assam, India. In: recent advances in bioenergy research, Sardar Swaran Singh National Institute of Renewable Energy, Kapurthala

    Google Scholar 

  52. Fischer B, Pigneri A (2011) Potential for electrification from biomass gasification in Vanuatu. Energy 36:1640–1651. doi:10.1016/j.energy.2010.12.066

    Article  Google Scholar 

  53. Hiloidhari M, Baruah DC (2011) Crop residue biomass for decentralized electrical power generation in rural areas (part 1): investigation of spatial availability. Renew Sustain Energy Rev 15:1885–1892. doi:10.1016/j.rser.2010.12.010

    Article  Google Scholar 

  54. Rosillo-Calle F, Woods J (2012) The biomass assessment handbook. Routledge, London, UK

    Google Scholar 

  55. Sheth PN, Babu BV (2009) Experimental studies on producer gas generation from wood waste in a downdraft biomass gasifier. Bioresour Technol 100:3127–3133. doi:10.1016/j.biortech.2009.01.024

    Article  Google Scholar 

  56. Martínez JD, Mahkamov K, Andrade RV, Silva Lora EE (2012) Syngas production in downdraft biomass gasifiers and its application using internal combustion engines. Renew Energy 38:1–9. doi:10.1016/j.renene.2011.07.035

    Google Scholar 

  57. IRENA (2012) Cost analysis of biomass for power generation. IRENA Secretariat, Abu Dhabi, United Arab Emirates

    Google Scholar 

  58. Larson ED (1998) Small-scale gasification-based biomass power generation. Small 1, Center for Energy and Environmental Studies, Princeton University, Princeton, USA

    Google Scholar 

  59. Chawdhury A, Mahkamov K (2010) Development of a small downdraft biomass gasifier for developing countries. Analytical 3(2):81–99

    Google Scholar 

  60. Zhou Z, Yin X, Xu J, Ma L (2012) The development situation of biomass gasification power generation in China. Energy Policy 51:52–57. doi:10.1016/j.enpol.2012.05.085

    Article  Google Scholar 

  61. GoI (2009) Guidelines for village electrification through decentralized distributed generation (DDG) under Rajiv Gandhi Grameen Vidyutikaran Yojana. Government of India, Ministry of Power, New Delhi, India

    Google Scholar 

  62. Arena U, Di Gregorio F, Santonastasi M (2010) A techno-economic comparison between two design configurations for a small scale, biomass-to-energy gasification based system. Chem Eng J 162:580–590. doi:10.1016/j.cej.2010.05.067

    Article  Google Scholar 

  63. Nouni MR, Mullick SC, Kandpal TC (2007) Biomass gasifier projects for decentralized power supply in India: a financial evaluation. Energy Policy 35:1373–1385. doi:10.1016/j.enpol.2006.03.016

    Article  Google Scholar 

  64. Matthews RW, Mortimer ND (2000) Estimation of carbon dioxide and energy budgets of wood-fired electricity generation systems in Britain. IEA Bioenergy 25:59–78

    Google Scholar 

  65. Boyle G (2010) Empowering Bihar: case studies for bridging the energy deficit and driving the change. Greenpeace India Society. Bengaluru, India, P.24

    Google Scholar 

  66. IEC/TS (2008) Recommendations for small renewable energy and hybrid systems for rural electrification, 1.0 ed. International Electrotechnical Commission, Geneve, Switzerland

    Google Scholar 

  67. Koohi-Kamali S, Tyagi VV, Rahim NA et al (2013) Emergence of energy storage technologies as the solution for reliable operation of smart power systems: a review. Renew Sustain Energy Rev 25:135–165. doi:10.1016/j.rser.2013.03.056

  68. Albright G, Edie J, Al-Hallaj S (2012) Comparison of lead acid to lithium-ion in stationary storage applications. AllCell Technologies LLC, Chicago, USA

    Google Scholar 

  69. IRENA (2012) Electricity storage and renewables for Island power. IRENA Secretariat, Abu Dhabi, United Arab Emirates

    Google Scholar 

  70. GĂĽl T (2004) Integrated analysis of hybrid systems for rural electrification in developing countries. TRITA-LWR Master Thesis LWR-EX-04 26

    Google Scholar 

  71. Patel M (2005) Wind and solar power systems. doi:10.1201/9781420039924

  72. Ackermann T (2000) Wind energy technology and current status: a review. Renew Sustain Energy Rev 4:315–374. doi:10.1016/S1364-0321(00)00004-6

    Article  Google Scholar 

  73. Ashok S (2007) Optimised model for community-based hybrid energy system. Renew Energy 32:1155–1164. doi:10.1016/j.renene.2006.04.008

    Article  Google Scholar 

  74. Muhida R, Mostavan A, Sujatmiko W et al (2001) The 10 years operation of a PV-micro-hydro hybrid system in Taratak, Indonesia. Sol Energy Mater Sol Cells 67:621–627. doi:10.1016/S0927-0248(00)00334-2

    Article  Google Scholar 

  75. Celik AN (2002) Optimisation and techno-economic analysis of autonomous photovoltaic–wind hybrid energy systems in comparison to single photovoltaic and wind systems. Energy Convers Manage 43:2453–2468. doi:10.1016/S0196-8904(01)00198-4

    Article  Google Scholar 

  76. Panapakidis IP, Sarafianos DN, Alexiadis MC (2012) Comparative analysis of different grid-independent hybrid power generation systems for a residential load. Renew Sustain Energy Rev 16:551–563. doi:10.1016/j.rser.2011.08.021

    Article  Google Scholar 

  77. EWEA (2009) Wind energy—the facts. The European Wind Energy Association, Brussells, Belgium

    Google Scholar 

  78. Bekele G, Tadesse G (2012) Feasibility study of small Hydro/PV/Wind hybrid system for off-grid rural electrification in Ethiopia. Appl Energy 97:5–15. doi:10.1016/j.apenergy.2011.11.059

    Article  Google Scholar 

  79. Kumarvel S, Ashok S (2010) Residential-scale solar/pico-hydel/wind based hybrid energy system for remote area electrification. PEIE 2010, CCIS 102, 56–62

    Google Scholar 

  80. Nayar C (2010) High renewable energy penetration diesel generator systems. Electrical India, Perth, Australia

    Google Scholar 

  81. Ashok S, Member S, Balamurugan P (2007) Biomass gasifier based hybrid energy system for rural areas. IEEE Can Electr Power Conf 371–375

    Google Scholar 

  82. Kenfack J, Neirac FP, Tatietse TT et al (2009) Microhydro-PV-hybrid system: sizing a small hydro-PV-hybrid system for rural electrification in developing countries. Renew Energy 34:2259–2263. doi:10.1016/j.renene.2008.12.038

    Article  Google Scholar 

  83. Hafez O, Bhattacharya K (2012) Optimal planning and design of a renewable energy based supply system for microgrids. Renew Energy 45:7–15. doi:10.1016/j.renene.2012.01.087

    Article  Google Scholar 

  84. Weldemariam LE (2010) Genset-solar-wind hybrid power system of off-grid power station for rural applications. Delft University of Technology, Delft, The Netherlands

    Google Scholar 

  85. Gets A, Mhlanga R (2013) Powering the future. Renewable energy roll-out in South Africa. AGAMA Energy (Pty) Ltd, Greenpeace Africa

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacopo Barbieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barbieri, J., Simonet, E. (2013). Technologies for Power Generation in Rural Contexts. In: Colombo, E., Bologna, S., Masera, D. (eds) Renewable Energy for Unleashing Sustainable Development. Springer, Cham. https://doi.org/10.1007/978-3-319-00284-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00284-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-00283-5

  • Online ISBN: 978-3-319-00284-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics