Skip to main content

Grid Connected Systems for Access to Electricity: From Microgrid to Grid Extension

  • Chapter
  • First Online:
Renewable Energy for Unleashing Sustainable Development

Abstract

All over the world, microgrids are becoming an important paradigm to supply electricity to many different categories of customers: in developed countries, where an electricity distribution grid is already in place, microgrids are seen as a way of migrating towards the so-called Smart Grids, able in particular to provide increased reliability to final users and to exploit as much as possible renewable primary sources for the electricity generation. In this framework, it is important that, in case of a significant perturbation of the main grid, the local microgrid can disconnect and continue the operation without any particular problem, so as to increase the reliability of the supply for its customers (top–bottom approach). On the contrary, in developing countries, microgrids are often the only way to provide electricity to small remote villages, as a connection to an external main grid is not available yet. In this case, the microgrid has to be operated in a standing-alone (off-grid) mode, but it should be designed in such way that, when eventually a main grid is built, the connection of the microgrid to the main grid will be possible (bottom–top approach). In this framework, it is possible to look step-by-step at the growth of the bulk (national) power system as to the aggregation of many small microgrids. The present chapter deals with the main technical issues related to the planning and the operation of microgrids, both in the presence and in the absence of an external main grid: balancing the load, control and protection systems, voltage and frequency control, normal and emergency operations and so on. The goal is to provide a simple and straightforward synthesis of what to take into account when decisions have to be made at a higher than technical level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

Alternating Current

CB:

Circuit Breakers

CERTS:

Consortium for Electric Reliability Technology Solutions

CSC:

Current Source Converter

DC:

Direct Current

DSM:

Demand Side Management

DSP:

Digital Signal Processor

DER:

Distributed Energy Resource

DG:

Distributed Generator

DSO:

Distribution System Operator

DFIG:

Doubly Fed Induction Generator

EMI:

Electromagnetic Interference

EMS:

Energy Management System

IPP:

Independent Power Producers

IGBT:

Insulated-Gate Bipolar Transistor

IGCT:

Integrated Gate-Commutated Thyristor

ICE:

Internal Combustion Engine

LC:

Local Controller

LV:

Low Voltage

MC:

Matrix Converter

MO:

Market Operator

MV:

Medium Voltage

MCC:

Microgrid Central Controller

PAM:

Pulse-Amplitude Modulation

PMSG:

Permanent Magnet Synchronous Generator

PCC:

Point of Common Coupling

PoC:

Point of Coupling

PWM:

Pulse Width Modulation

SCR:

Silicon Controlled Rectifier

SCIG:

Squirrel Cage Induction Generator

SMES:

Superconducting Magnetic Energy Storage

VSC:

Voltage Source Converter

WRIG:

Wound Rotor Induction Generator

WRSG:

Wound Rotor Synchronous Generator

ZCS:

Zero Current-Switching

ZVS:

Zero Voltage-Switching

References

  1. DOE (2011) DOE microgrid workshop report (trans: reliability OoEDaE). Smart Grid R&D Program. DOE, San Diego

    Google Scholar 

  2. Robert L, Abbas A, Chris M, John S, Jeff D, Ross G, Sakis MA, Robert Y, Joe E (2002) Integration of distributed energy resources: the CERTS microgrid concept (trans: Energy UDo), US

    Google Scholar 

  3. Lasseter B (2001) Microgrids distributed power generation. Power Eng Soc Winter Meet 1:146–149. doi:10.1109/PESW.2001.917020

    Google Scholar 

  4. Lasseter RH (2011) Smart distribution: coupled microgrids. Proc IEEE 99(6):1074–1082. doi:10.1109/JPROC.2011.2114630

    Article  Google Scholar 

  5. Driesen J, Katiraei F (2008) Design for distributed energy resources. IEEE Power Energy Mag 6(3):30–40. doi:10.1109/MPE.2008.918703

    Article  Google Scholar 

  6. Nigim KA, Hegazy YG (2003) Intention islanding of distributed generation for reliability enhancement. IEEE Power Eng Soc Gen Meet 2003 4:2451 (vol 2454). doi:10.1109/PES.2003.1271025

    Google Scholar 

  7. IEC (2011) Electrical energy storage. White paper: International Electrotechnical Commission, Switzerland

    Google Scholar 

  8. EPRI (2010) Electric energy storage technology options: a white paper primer on applications, costs, and benefits. Palo Alto, CA

    Google Scholar 

  9. Kennedy J, Ciufo P, Agalgaonkar A (2012) Intelligent load management in microgrids. IEEE Power Energy Society General Meeting 2012, pp 1–8. doi:10.1109/PESGM.2012.6345729

  10. Palensky P, Dietrich D (2011) Demand side management: demand response, intelligent energy systems, and smart loads. IEEE Trans Ind Inf 7(3):381–388. doi:10.1109/TII.2011.2158841

    Article  Google Scholar 

  11. Tsikalakis AG, Hatziargyriou ND (2008) Centralized control for optimizing microgrids operation. IEEE Trans Energy Convers 23(1):241–248. doi:10.1109/TEC.2007.914686

    Article  Google Scholar 

  12. Jenkins N, Allan R, Crossley P, Kirschen D, Strbac G (2000) Economics of embedded generation In: Embedded generation. IET Power Energy vol 31, 1st edn. IET, London, pp 2531–2253

    Google Scholar 

  13. Kroposki B, Lasseter R, Ise T, Morozumi S, Papatlianassiou S, Hatziargyriou N (2008) Making microgrids work. IEEE Power Energy Mag 6(3):40–53. doi:10.1109/MPE.2008.918718

    Article  Google Scholar 

  14. Castronuovo ED (2009) Optimization advances in electric power systems. Nova Science Publishers Inc., Hauppauge

    Google Scholar 

  15. Parisio A, Glielmo L (2012) Multi-objective optimization for environmental/economic microgrid scheduling. In: 2012 IEEE international conference on cyber technology in automation, control, and intelligent systems (CYBER), pp 27–31. doi:10.1109/CYBER.2012.6392519

  16. Marnay C, Asano H, Papathanassiou S, Strbac G (2008) Policymaking for microgrids. IEEE Power Energy Mag 6(3):66–77. doi:10.1109/MPE.2008.918715

    Article  Google Scholar 

  17. Stamp J (2012) The SPIDERS project—smart power infrastructure demonstration for energy reliability and security at US military facilities. Innovative Smart Grid Technologies (ISGT), 2012 IEEE PES, p 1. doi:10.1109/ISGT.2012.6175743

  18. Blyden BK, Wei-jen L (2006) Modified microgrid concept for rural electrification in Africa. IEEE Engineering Society General Meeting, 5 pp doi:10.1109/PES.2006.1709540

  19. Klapp D, Zimmerly R, CERTS JH Microgrid mechanical switch test report

    Google Scholar 

  20. Lynch J, John V, Danial SM, Benedict E, Vihinen I, Kroposki B, Pink C (2006) Flexible DER utility interface system. Final report

    Google Scholar 

  21. Kroposki B, Pink C, Lynch J, John V, Daniel SM, Benedict E, Vihinen I (2007) Development of a high-speed static switch for distributed energy and microgrid applications. Power conversion conference, Nagoya, 2007 PCC ‘07, pp 1418–1423. doi:10.1109/PCCON.2007.373150

  22. Majumder R, Ghosh A, Ledwich G, Zare F (2010) Power management and power flow control with back-to-back converters in a utility connected microgrid. IEEE Trans Power Syst 25(2):821–834. doi:10.1109/TPWRS.2009.2034666

    Article  Google Scholar 

  23. Niiranen J, Komsi R, Routimo M, Lähdeaho T, Antila S (2010) Experiences from a back-to-back converter fed village microgrid. In: Innovative smart grid technologies conference Europe (ISGT Europe), 2010 IEEE PES, pp 1–5. doi:10.1109/ISGTEUROPE.2010.5638991

  24. Hansen LH, Helle L, Blaabjerg F, Ritchie E, Munk-Nielsen S, Bindner HW, Sørensen PE, Bak-Jensen B (2001) Conceptual survey of generators and power electronics for wind turbines. National Laboratory, Roskilde, Denmark

    Google Scholar 

  25. Kumar V, Bansal RC, Joshi RR, Jadeja RB, Mhaskar UP (2011) Modern power electronic technology for the integration of renewable energy sources. In: Ahmed FZ, Ramesh CB (eds) Handbook of renewable energy technology. World Scientific Publishers, Singapore, pp 673-711

    Google Scholar 

  26. Alesina A, Venturini M (1981) Solid-state power conversion: a Fourier analysis approach to generalized transformer synthesis. IEEE Trans Circ Syst 28(4):319–330. doi:10.1109/TCS.1981.1084993

    Article  MathSciNet  Google Scholar 

  27. Friedli T, Kolar JW (2012) Milestones in matrix converter research. IEEJ J Ind Appl 1(1):2–14

    Google Scholar 

  28. Bhat AKS, Dewan SD (1988) Resonant inverters for photovoltaic array to utility interface. IEEE Trans Aerospace Electron Syst 24(4):377–386. doi:10.1109/7.7179

    Article  Google Scholar 

  29. Simoes MG, Severson J, Sen PK, Palmer JA (2001) Resonant AC link system converter for fuel cell grid interface. In: Industrial Electronics Society, 2001 IECON ‘01. The 27th annual conference of the IEEE, vols 3, 1953, pp 1953–1958. doi:10.1109/IECON.2001.975590

  30. Xiaodong L, Bhat AKS (2012) A utility-interfaced phase-modulated high-frequency isolated dual LCL DC/AC converter. IEEE Trans Ind Electron 59(2):1008–1019. doi:10.1109/TIE.2011.2158044

    Article  Google Scholar 

  31. IEEE (2011) IEEE draft guide for design, operation, and integration of distributed resource island systems with electric power systems. IEEE P15474/D11, March 2011, pp 1–55

    Google Scholar 

  32. IEC (2009) Communication networks and systems for power utility automation. Part 7-420: Basic communication structure—distributed energy resources logical nodes, vol 61850-7-420 IEC, Geneva, Switzerland

    Google Scholar 

  33. IEEE (2003) IEEE standard for interconnecting distributed resources with electric power systems. IEEE Std 1547-2003:0_1–16. doi:10.1109/IEEESTD.2003.94285

  34. IEC (2012) IEEE guide–adoption of IEC/TR 61000-3-7:2008, electromagnetic compatibility (EMC)–limits–assessment of emission limits for the connection of fluctuating installations to MV, HV and EHV power systems. IEEE Std 14531-2012 (Adoption of IEC/TR 61000-3-7:2008), pp 1–78. doi:10.1109/IEEESTD.2012.6232421

  35. Basso TS, DeBlasio R (2004) IEEE 1547 series of standards: interconnection issues. IEEE Trans Power Electron 19(5):1159–1162. doi:10.1109/TPEL.2004.834000

    Article  Google Scholar 

  36. Malmedal K, Kroposki B, Sen PK (2008) Distributed energy resources and renewable energy in distribution systems: protection considerations and penetration levels. In: Industry Applications Society annual meeting, 2008 IAS ‘08 IEEE, pp 1–8. doi:10.1109/08IAS.2008.148

  37. Yang Z, Le J, Liu K, Cai W (2011) Preliminary study on the technical requirements of the grid-connected microgrid. In: 2011 4th international conference on electric utility deregulation and restructuring and power technologies (DRPT), pp 1656–1662. doi:10.1109/DRPT.2011.5994163

  38. Hansen LH, Madsen PH, Blaabjerg F., Christensen H. C., Lindhard U., Eskildsen K. (2001) Generators and power electronics technology for wind turbines. Industrial Electronics Society, 2001 IECON ‘01 the 27th annual conference of the IEEE 3:2000–2005 vol 2003. doi:10.1109/IECON.2001.975598

  39. Wojszczyk B, Herbst D, Bradt MM (2007) Wind generation implementation and power protection, automation and control challenges. Power-Gen International, New Orleans, Louisiana, USA

    Google Scholar 

  40. Camm EH, Behnke MR, Bolado O, Bollen M, Bradt M, Brooks C, Dilling W, Edds M, Hejdak WJ, Houseman D, Klein S, Li F, Li J, Maibach P, Nicolai T, Patino J, Pasupulati SV, Samaan N, Saylors S, Siebert T, Smith T, Starke M, Walling R (2009) Characteristics of wind turbine generators for wind power plants. Power and Energy Society General Meeting, 2009 PES ‘09 IEEE, pp 1–5. doi:10.1109/PES.2009.5275330

  41. Hansen AD (2005) Generators and power electronics for wind turbines. In: Ackermann T (ed) Wind power in power systems, 1st edn. Wiley, Chichester, pp 53–78. doi:10.1002/0470012684.fmatter

  42. Llorente Iglesias R, Lacal Arantegui R, Aguado Alonso M (2011) Power electronics evolution in wind turbines—a market-based analysis. Renew Sustain Energy Rev 15(9):4982–4993. doi:http://dx.doi.org/10.1016/j.rser.2011.07.056

  43. Blaabjerg F, Zhe C, Kjaer SB (2004) Power electronics as efficient interface in dispersed power generation systems. IEEE Trans Power Electron 19(5):1184–1194. doi:10.1109/TPEL.2004.833453

    Article  Google Scholar 

  44. Li Z, Kai S, Yan X, Lanlan F, Hongjuan G (2011) A modular grid-connected photovoltaic generation system based on DC bus. IEEE Trans Power Electron 26(2):523–531. doi:10.1109/TPEL.2010.2064337

    Article  Google Scholar 

  45. Herman D (2001) Investigation of the technical and economic feasibility of micro-grid based power systems. EPRI

    Google Scholar 

  46. Hatziargyriou ND, Dimeas A, Tsikalakis A (2005) Centralised and decentralized control of microgrids. Int J Distrib Energy Res 1(3):197–212

    Google Scholar 

  47. Yuen C, Oudalov A, Timbus A (2011) The provision of frequency control reserves from multiple microgrids. IEEE Trans Ind Electron 58(1):173–183. doi:10.1109/TIE.2010.2041139

    Article  Google Scholar 

  48. Su W, Wang J (2012) Energy management systems in microgrid operations. Electr J 25(8):45–60. doi:http://dx.doi.org/10.1016/j.tej.2012.09.010

    Google Scholar 

  49. Bergen AR (1986) Power systems analysis, 2 edn. Prentice Hall, Upper Saddle River, p 07458

    Google Scholar 

  50. Katiraei F, Iravani R, Hatziargyriou N, Dimeas A (2008) Microgrids management. IEEE Power Energy Mag 6(3):54–65. doi:10.1109/MPE.2008.918702

    Article  Google Scholar 

  51. Teodorescu R, Liserre M (2011) Grid converters for photovoltaic and wind power systems, vol 29. Wiley-IEEE press

    Google Scholar 

  52. Guerrero JM, Matas J, de Vicuña LG, Castilla M, Miret J (2006) Wireless-control Strategy for parallel operation of distributed-generation inverters. IEEE Trans Ind Electron 53(5):1461–1470. doi:10.1109/TIE.2006.882015

    Article  Google Scholar 

  53. Guerrero JM, Matas J, de Vicuña LG, Castilla M, Miret J (2007) Decentralized control for parallel operation of distributed generation inverters using resistive output impedance. IEEE Trans Ind Electron 54(2):994–1004. doi:10.1109/TIE.2007.892621

    Article  Google Scholar 

  54. Majumder R, Ghosh A, Ledwich G, Zare F (2009) Angle droop versus frequency droop in a voltage source converter based autonomous microgrid. Power and Energy Society General Meeting, 2009 PES ‘09 IEEE, pp 1–8. doi:10.1109/PES.2009.5275987

  55. Oudalov A, Fidigatti A (2009) Adaptive network protection in microgrids. Int J Distrib Energy Res 5(3):201–226

    Google Scholar 

  56. Buigues G, Dyśko A, Valverde V, Zamora I, Fernández E (2013) Microgrid protection: technical challenges and existing techniques. Renew Energy Power Qual J 11(262)

    Google Scholar 

  57. Li B, Li Y, Ma T (2011) Research on earthing schemes in LV microgrids. In: 2011 International conference on advanced power system automation and protection (APAP), vol 2, pp 1003–1007. doi:10.1109/APAP.2011.6180532

  58. Feero WE, Dawson DC, Stevens J (2002) White paper on protection issues of the microgrid concept. Consortium for Electric Reliability Technology Solutions (CERTS)

    Google Scholar 

  59. Delfanti M, Merlo M, Monfredini G, Olivieri V, Pozzi M, Silvestri A (2010) Hosting dispersed generation on Italian MV networks: towards smart grids. In: 14th international conference on harmonics and quality of power (ICHQP), pp 1–6. doi:10.1109/ICHQP.2010.5625442

  60. Morris GY, Abbey C, Wong S, Joos G (2012) Evaluation of the costs and benefits of microgrids with consideration of services beyond energy supply. IEEE Power and Energy Society General Meeting, pp 1–9. doi:10.1109/PESGM.2012.6345380

  61. Ramapati Kumar MR (2012) Microgrid design case study for Bihar in the role of microgrids in promoting the integration of renewable energy on India. “e[r] Cluster” for a smart energy access. Greenpeace India Society, Bangalore

    Google Scholar 

  62. Cust J, Singh A, Neuhoff K (2007) Rural electrification in India: economic and institutional aspects of renewables. Faculty of Economics, University of Cambridge

    Google Scholar 

  63. Szabó S, Bódis K, Huld T, Moner-Girona M (2011) Energy solutions in rural Africa: mapping electrification costs of distributed solar and diesel generation versus grid extension. Environ Res Lett 6(3):034002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Godfrey Gladson Moshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Moshi, G.G., Berizzi, A., Bovo, C. (2013). Grid Connected Systems for Access to Electricity: From Microgrid to Grid Extension. In: Colombo, E., Bologna, S., Masera, D. (eds) Renewable Energy for Unleashing Sustainable Development. Springer, Cham. https://doi.org/10.1007/978-3-319-00284-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00284-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-00283-5

  • Online ISBN: 978-3-319-00284-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics