Skip to main content

Transformation Optics

  • Chapter
Analogue Gravity Phenomenology

Part of the book series: Lecture Notes in Physics ((LNP,volume 870))

  • 2319 Accesses

Abstract

Transformation optics applies ideas from Einstein’s general theory of relativity in optical and electrical engineering for designing devices that can do the (almost) impossible: invisibility cloaking, perfect imaging, levitation, and the creation of analogues of the event horizon. This chapter gives an introduction to this field requiring minimal prerequisites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We consider purely spatial geometries first and then, in Sect. 10.5, we generalise our theory to spacetime geometries.

  2. 2.

    In gravitational lensing, gravity alters primarily the measure of time, but due to the conformal invariance of electromagnetism (see Sect. 10.5.2) this is equivalent to altering the measure of space.

  3. 3.

    It might be reassuring to know that perfect deception is impossible; the truth will always appear in the end.

  4. 4.

    A repulsive Casimir force was observed [31] between three materials with ε 1<ε 2<ε 3 over a sufficiently broad frequency range [32], i.e. in materials but not in empty space yet.

  5. 5.

    Of course, in a more realistic theory the charged particle should not be regarded as being a classical object interacting with the quantum vacuum, as in Casimir’s case [44], but rather as a self-consistent quantum structure.

References

  1. Gordon, W.: Ann. Phys. (Leipz.) 72, 421 (1923) (in German)

    Article  ADS  MATH  Google Scholar 

  2. Tamm, I.Y.: J. Russ. Phys.-Chem. Soc. 56, 2–3 (1924) (in Russian)

    Google Scholar 

  3. Tamm, I.Y.: J. Russ. Phys.-Chem. Soc. 56, 3–4 (1925) (in Russian)

    Google Scholar 

  4. Penrose, R.: Private communication

    Google Scholar 

  5. Mahoney, M.S.: The Mathematical Career of Pierre de Fermat, pp. 1601–1665. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  6. Greenleaf, A., Lassas, M., Uhlmann, G.: Math. Res. Lett. 10, 685 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Leonhardt, U.: Science 312, 1777–1780 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Pendry, J.B., Schurig, D., Smith, D.R.: Science 312, 1780 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Leonhardt, U., Philbin, T.G.: New J. Phys. 8, 247 (2006)

    Article  ADS  Google Scholar 

  10. Chen, H., Chan, C.T., Sheng, P.: Nat. Mater. 9, 387 (2010)

    Article  ADS  Google Scholar 

  11. Leonhardt, U., Philbin, T.G.: Geometry and Light: The Science of Invisibility. Dover, Mineola (2010)

    Google Scholar 

  12. Service, R., Cho, A.: Science 330, 1622 (2010)

    Article  ADS  Google Scholar 

  13. Schutz, B.F.: A First Course in General Relativity. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  14. Schurig, D., Mock, J.J., Justice, B.J., Cummer, S.A., Pendry, J.B., Starr, A.F., Smith, D.R.: Science 314, 977 (2006)

    Article  ADS  Google Scholar 

  15. Ma, Y.G., Ong, C.K., Tyc, T., Leonhardt, U.: Nat. Mater. 8, 639 (2009)

    Article  ADS  Google Scholar 

  16. Zhang, B., Luo, Y., Liu, X., Barbastathis, G.: Phys. Rev. Lett. 106, 033901 (2011)

    Article  ADS  Google Scholar 

  17. Chen, X., Luo, Y., Zhang, J., Jiang, K., Pendry, J.B., Zhang, S.: Nat. Commun. 2, 176 (2011)

    Article  ADS  Google Scholar 

  18. Ma, Y.G., Sahebdivan, S., Ong, C.K., Tyc, T., Leonhardt, U.: New J. Phys. 13, 033016 (2011)

    Article  Google Scholar 

  19. Chen, H., Chan, C.T.: J. Appl. Phys. 104, 033113 (2008)

    Article  ADS  Google Scholar 

  20. Li, J., Pendry, J.B.: Phys. Rev. Lett. 101, 203901 (2008)

    Article  ADS  Google Scholar 

  21. Leonhardt, U., Tyc, T.: Science 323, 110 (2009)

    Article  ADS  Google Scholar 

  22. Perczel, J., Tyc, T., Leonhardt, U.: New J. Phys. 13, 083007 (2011)

    Article  ADS  Google Scholar 

  23. Zhang, S., Xia, C., Fang, N.: Phys. Rev. Lett. 106, 024301 (2011)

    Article  ADS  Google Scholar 

  24. Pendry, J.B.: Phys. Rev. Lett. 85, 3966 (2000)

    Article  ADS  Google Scholar 

  25. Minkel, J.R.: Phys. Rev. Focus 9, 23 (2002)

    Article  Google Scholar 

  26. Valentine, J., Zhang, S., Zentgraf, T., Ulin-Avila, E., Genov, D.A., Bartal, G., Zhang, X.: Nature 455, 376 (2008)

    Article  ADS  Google Scholar 

  27. Fang, N., Lee, H., Sun, C., Zhang, X.: Science 308, 534 (2005)

    Article  ADS  Google Scholar 

  28. Stockman, M.I.: Phys. Rev. Lett. 98, 177404 (2007)

    Article  ADS  Google Scholar 

  29. Casimir, H.B.G.: Proc. K. Ned. Akad. Wet. 51, 793 (1948)

    MATH  Google Scholar 

  30. Leonhardt, U., Philbin, T.G.: New J. Phys. 9, 254 (2007)

    Article  ADS  Google Scholar 

  31. Munday, J.N., Capasso, F., Parsegian, V.A.: Nature 457, 170 (2009)

    Article  ADS  Google Scholar 

  32. Dzyaloshinskii, I.E., Lifshitz, E.M., Pitaevskii, L.P.: Adv. Phys. 10, 165 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  33. Einstein, A.: Sitzungsber. K. Preuss. Akad. Wiss. (Berlin) 142 (1917)

    Google Scholar 

  34. Maxwell, J.C.: Camb. Dublin Math. J. 8, 188 (1854)

    Google Scholar 

  35. Luneburg, R.K.: Mathematical Theory of Optics. University of California Press, Berkeley (1964)

    Google Scholar 

  36. Born, M., Wolf, E.: Principles of Optics. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  37. Leonhardt, U.: New J. Phys. 11, 093040 (2009)

    Article  ADS  Google Scholar 

  38. Leonhardt, U., Philbin, T.G.: Phys. Rev. A 81, 011804 (2010); 84, 049902 (2011)

    Article  ADS  Google Scholar 

  39. Gabrielli, L.H., Lipson, M.: J. Opt. 13, 024010 (2011)

    Article  ADS  Google Scholar 

  40. Ma, Y.G., Sahebdivan, S., Ong, C.K., Tyc, T., Leonhardt, U.: New J. Phys. 13, 033016 (2011)

    Article  Google Scholar 

  41. Tyc, T., Zhang, X.: Nature 480, 42 (2011)

    Article  ADS  Google Scholar 

  42. Ma, Y.G., Sahebdivan, S., Ong, C.K., Tyc, T., Leonhardt, U.: New J. Phys. (in press)

    Google Scholar 

  43. Leonhardt, U., Simpson, W.M.R.: Phys. Rev. D 84, 081701 (2011)

    Article  ADS  Google Scholar 

  44. Casimir, H.B.G.: Physica 19, 846 (1956)

    Article  ADS  Google Scholar 

  45. Jackson, J.D.: Classical Electrodynamics. Wiley, New York (1998)

    Google Scholar 

  46. Boyer, T.H.: Phys. Rev. 174, 1764 (1968)

    Article  ADS  Google Scholar 

  47. Milton, K.A., DeRaad, L.L., Schwinger, J.: Ann. Phys. (N.Y.) 115, 388 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  48. Plebanski, J.: Phys. Rev. 118, 1396 (1960)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. Serdyukov, A., Semchenko, I., Tretyakov, S., Sihvola, A.: Electromagnetics of Bi-anisotropic Materials. Gordon and Breach, Amsterdam (2001)

    Google Scholar 

  50. Quan, P.M.: C. R. Acad. Sci. (Paris) 242, 465 (1957)

    Google Scholar 

  51. Quan, P.M.: Arch. Ration. Mech. Anal. 1, 54 (1957/58)

    Article  Google Scholar 

  52. Leonhardt, U., Piwnicki, P.: Phys. Rev. A 60, 4301 (1999)

    Article  ADS  Google Scholar 

  53. Boyd, R.W.: Nonlinear Optics. Academic Press, San Diego (1992)

    Google Scholar 

  54. Philbin, T.G., Kuklewicz, C., Robertson, S., Hill, S., Konig, F., Leonhardt, U.: Science 319, 1367 (2008)

    Article  ADS  Google Scholar 

  55. Belgiorno, F., Cacciatori, S.L., Clerici, M., Gorini, V., Ortenzi, G., Rizzi, L., Rubino, E., Sala, V.G., Faccio, D.: Phys. Rev. Lett. 105, 203901 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I am most grateful for the discussions I had with many distinguished scientists about geometry, light and a wee bit of magic. In particular, I thank my group at St Andrews and wish them well, Simon Horsley, Susanne Kehr, Thomas Philbin, Sahar Sahebdivan, and William Simpson. My work has been supported by the University of St Andrews, the Engineering and Physical Sciences Research Council and the Royal Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf Leonhardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Leonhardt, U. (2013). Transformation Optics. In: Faccio, D., Belgiorno, F., Cacciatori, S., Gorini, V., Liberati, S., Moschella, U. (eds) Analogue Gravity Phenomenology. Lecture Notes in Physics, vol 870. Springer, Cham. https://doi.org/10.1007/978-3-319-00266-8_10

Download citation

Publish with us

Policies and ethics