CNT/FRP Composites

  • Moones RahmandoustEmail author
  • Majid R. Ayatollahi
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 39)


The use of fiber reinforced polymer composites (FRPs) is enhancing in different engineering applications because of their high specific strength and stiffness.


Fracture Toughness Carbon Fiber Wear Rate Epoxy Matrix Flexural Modulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. An, F. et al.: Preparation and characterization of carbon nanotube-hybridized carbon fiber to reinforce epoxy composite. Mater. Des. 33, 197–202 (2012)Google Scholar
  2. An, Q., Rider, A.N., Thostenson, E.T.: Electrophoretic deposition of carbon nanotubes onto carbon-fiber fabric for production of carbon/epoxy composites with improved mechanical properties. Carbon 50(11), 4130–4143 (2012)CrossRefGoogle Scholar
  3. Arai, M., Noro, Y., Sugimoto, K. i., Endo, M.: Mode I and mode II interlaminar fracture toughness of CFRP laminates toughened by carbon nanofiber interlayer. Compos. Sci. Technol. 68(2), 516–25 ( 2008)Google Scholar
  4. Barbaz-I, R.: Experimental determining of the elastic modulus and strength of composites reinforced with two nanoparticles. MSc Thesis, School of Mechanical Engineering Iran University of Science and Technology, Tehran, Iran (2014)Google Scholar
  5. Barber, A.H., Zhao, Q., Wagner, H.D., Baillie, C.A.: Characterization of e-glass polypropylene interfaces using carbon nanotubes as strain sensors. Compos. Sci. Technol. 64(13–14), 1915–1919 (2004)CrossRefGoogle Scholar
  6. Böger, L., Sumfleth, J., Hedemann, H., Schulte, K.: Improvement of fatigue life by incorporation of nanoparticles in glass fibre reinforced epoxy. Compos. A 41(10), 1419–1424 (2010)CrossRefGoogle Scholar
  7. Chen, W., et al.: Basalt fiber–epoxy laminates with functionalized multi-walled carbon nanotubes. Compos. A 40(8), 1082–1089 (2009)CrossRefGoogle Scholar
  8. Davis, D.C., Wilkerson, J.W., Zhu, J., Ayewah, D.O.O.: Improvements in mechanical properties of a carbon fiber epoxy composite using nanotube science and technology. Compos. Struct. 92(11), 2653–2662 (2010)CrossRefGoogle Scholar
  9. Fan, Z., Santare, M.H., Advani, S.G.: Interlaminar shear strength of glass fiber reinforced epoxy composites enhanced with multi-walled carbon nanotubes. Compos. A 39(3), 540–554 (2008)CrossRefGoogle Scholar
  10. Garcia, E.J., Wardle, B.L., Hart, A.J., Yamamoto, N.: Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown In Situ. Composites Science and Technology 68(9), 2034–2041 (2008a)CrossRefGoogle Scholar
  11. Garcia, E., Wardle, B., Hart, A.: Joining prepreg composite interfaces with aligned carbon nanotubes. Compos. A 39(6), 1065–1070 (2008b)CrossRefGoogle Scholar
  12. Godara, A., et al.: Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites. Carbon 47(12), 2914–2923 (2009)CrossRefGoogle Scholar
  13. Gong, Q.M., et al.: Tribological properties of carbon nanotube-doped carbon/carbon composites. Tribol. Int. 39(9), 937–944 (2006)CrossRefGoogle Scholar
  14. Green, K.J., Dean, D.R., Vaidya, U.K., Nyairo, E.: Multiscale fiber reinforced composites based on a carbon nanofiber/epoxy nanophased polymer matrix: synthesis, mechanical, and thermomechanical behavior. Compos. A 40(9), 1470–1475 (2009)CrossRefGoogle Scholar
  15. Guignier, C., et al.: Tribological behaviour and wear of carbon nanotubes grafted on carbon fibres. Compos. A 71, 168–175 (2015)CrossRefGoogle Scholar
  16. He, D., Bozlar, M., Genestoux, M., Bai, J.: Diameter- and length-dependent selforganizations of multi-walled carbon nanotubes on spherical alumina microparticles. Carbon 48(4), 1159–1170 (2010)CrossRefGoogle Scholar
  17. Isayev, A.I., Kumar, R., Lewis, T.M.: Ultrasound assisted twin screw extrusion of polymer-nanocomposites containing carbon nanotubes. Polymer 50(1), 250–260 (2009)CrossRefGoogle Scholar
  18. Ismagilov, Z.R., et al.: Development of methods of growing carbon nanofibers on silica glass fiber supports. Catal. Today 102–103, 85–93 (2005)Google Scholar
  19. Jia, X. et al.: Multiscale reinforcement and interfacial strengthening on epoxy-based composites by silica nanoparticle-multiwalled carbon nanotube complex. Compo. Part A, 48, 101–109 (2013)Google Scholar
  20. Khan, S.U., Kim, J.K.: Impact and delamination failure of multiscale carbon nanotube-fiber reinforced polymer composites: a review. Int. J. Aeronaut. Space Sci. 12(2), 115–133 (2011)Google Scholar
  21. Kim, H., Oh, E., Hahn, H.T., Lee, K.H.: Enhancement of fracture toughness of hierarchical carbon fiber composites via improved adhesion between carbon nanotubes and carbon fibers. Compos. A, 71, 72–83 (2015)Google Scholar
  22. Kim, M.T., et al.: Property enhancement of a carbon fiber/epoxy composite by using carbon nanotubes. Compos. B 42(5), 1257–1261 (2011)CrossRefGoogle Scholar
  23. Lim, D.S., An, J.W., Lee, H.J.: Effect of carbon nanotube addition on the tribological behavior of carbon/carbon composites. Wear 52(5–6), 512–517 (2002)CrossRefGoogle Scholar
  24. Liu, N., et al.: Effects of nano-sized and micro-sized carbon fibers on the interlaminar shear strength and tribological properties of high strength glass fabric/phenolic laminate in water environment. Compos. B 68, 92–99 (2015)CrossRefGoogle Scholar
  25. Li, W., et al.: On improvement of mechanical and thermo-mechanical properties of glass fabric/epoxy composites by incorporating CNT–Al2O3 hybrids. Compos. Sci. Technol. 103, 36–43 (2014)CrossRefGoogle Scholar
  26. Li, Y., et al.: Improvement of interlaminar mechanical properties of CFRP laminates using VGCF. Compos. A 40(12), 2004–2012 (2009)CrossRefGoogle Scholar
  27. Lubineau, G., Rahaman, A.: A review of strategies for improving the degradation properties of laminated continuous-fiber/epoxy composites with carbon-based nanoreinforcements. Carbon 50(7), 2377–2395 (2012)CrossRefGoogle Scholar
  28. Ma, L. et al.: Improving the interlaminar properties of polymer composites using a situ accumulation method to construct the multi-scale reinforcement of carbon nanofibers/carbon fibers. Compos. A, 72, 65–74 (2015)Google Scholar
  29. Ma, P.C., Wang, S.Q., Kim, J.K., Tang, B.Z.: In-situ amino functionalization of carbon nanotubes using ball milling. J. Nanosci. Nanotechnol. 9(2), 749–753 (2009)CrossRefGoogle Scholar
  30. Mujika, F., et al.: Influence of the modification with MWCNT on the interlaminar properties of long carbon fiber composites. Compos. B 43(3), 1336–1340 (2012)CrossRefGoogle Scholar
  31. Otsuka, K. et al.: Synthesis of carbon nanotubes on Ni/carbon-fiber catalysts under mild conditions. Carbon, 42(4), 727–736 (2004)Google Scholar
  32. Qiu, J., Zhang, C., Wang, B., Liang, R.: Carbon nanotube integrated multifunctional multiscale composites. Nanotechnology 18(27), 275–708 (2007)CrossRefGoogle Scholar
  33. Rahmanian, S. et al.: Mechanical characterization of epoxy composite with multiscale reinforcements: carbon nanotubes and short carbon fibers. Mater. Des. 60, 34–40 (2014)Google Scholar
  34. Sadeghian, R., Gangireddy, S., Minaie, B., Hsiao, K.: Manufacturing carbon nanofibers toughened polyester/glass fiber composites using vacuum assisted resin transfer molding for enhancing the mode-I delamination resistance. Compos. A 37(10), 1787–1795 (2006)CrossRefGoogle Scholar
  35. Sharma, S.P., Lakkad, S.C.: Effect of CNTs growth on carbon fibers on the tensile strength of CNTs grown carbon fiber-reinforced polymer matrix composites. Compos. A 42(1), 8–15 (2011)CrossRefGoogle Scholar
  36. Shekar, K.C., Prasad, B.A., Prasad, N.E.: Interlaminar shear strength of multi-walled carbon nanotube and carbon fiber reinforced, epoxy—matrix hybrid composite. Procedia Mater. Sci. 6, 1336–1343 (2014)Google Scholar
  37. Shen, Z., et al.: The effects of carbon nanotubes on mechanical and thermal properties of woven glass fibre reinforced polyamide-6 nanocomposites. Compos. Sci. Technol. 69(2), 239–244 (2009)CrossRefGoogle Scholar
  38. Siddiqui, N.A., Khan, S.U., Kim, J.K.: Experimental torsional shear properties of carbon fiber reinforced epoxy composites containing carbon nanotubes. Compos. Struct. 104, 230–238 (2013)CrossRefGoogle Scholar
  39. Siddiqui, N.A., et al.: Manufacturing and characterization of carbon fibre/epoxy composite prepregs containing carbon nanotubes. Compos. A 42(10), 1412–1420 (2011)CrossRefGoogle Scholar
  40. Siddiqui, N.A., et al.: Tensile strength of glass fibres with carbon nanotube–epoxy nanocomposite coating: effects of CNT morphology and dispersion state. Compos. A 41(4), 539–548 (2010)CrossRefGoogle Scholar
  41. Song, K., et al.: Structural polymer-based carbon nanotube composite fibers: understanding the processing–structure–performance relationship. Materials 6(6), 2543–2577 (2013)CrossRefGoogle Scholar
  42. Thostenson, E.T., et al.: Carbon nanotube/carbon fiber hybrid multiscale composites. J. Appl. Phys. 91(9), 6034–6037 (2002)CrossRefGoogle Scholar
  43. Veedu, V.P., et al.: Multifunctional composites using reinforced laminae with carbon-nanotube forests. Nat. Mater. 5, 457–462 (2006)CrossRefGoogle Scholar
  44. Wang, J., Zhang, X.: Poptube technology: enabling next generation multiscale and multifunctional structural composites, pp. 1774–1782. State College, Pennsylvania, USA, s.n. (2013)Google Scholar
  45. Warrier, A., et al.: The effect of adding carbon nanotubes to glass/epoxy composites in the fibre sizing and/or the matrix. Compos. A 41(4), 532–538 (2010)CrossRefGoogle Scholar
  46. Yokozeki, T., Iwahori, Y., Ishiwata, S., Enomoto, K.: Mechanical properties of CFRP laminates manufactured from unidirectional prepregs using CSCNT-dispersed epoxy. Compos. A 38(10), 2121–2130 (2007)CrossRefGoogle Scholar
  47. Zhang, H.J., et al.: Enhanced wear properties of hybrid PTFE/cotton fabric composites filled with functionalized multi-walled carbon nanotubes. Mater. Chem. Phys. 116(1), 183–190 (2009)CrossRefGoogle Scholar
  48. Zhang, J., Jua, S., Jiang, D., Peng, H.X.: Reducing dispersity of mechanical properties of carbon fiber/epoxy composites by introducing multi-walled carbon nanotubes. Compos. B, 54, 371–76 (2013)Google Scholar
  49. Zhou, Y., Pervin, F., Lewis, L., Jeelani, S.: Fabrication and characterization of carbon/epoxy composites mixed with multi-walled carbon nanotubes. Mater. Sci. Eng. A 475(1–2), 157–165 (2008)CrossRefGoogle Scholar
  50. Zhu, J., et al.: Processing a glass fiber reinforced vinyl ester composite with nanotube enhancement of interlaminar shear strength. Compos. Sci. Technol. 67(7–8), 1509–1517 (2007)CrossRefGoogle Scholar
  51. Zhu, S., et al.: Carbon nanotube growth on carbon fibers. Diam. Relat. Mater. 12(10–11), 1825–1828 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Griffith School of EngineeringGriffith University (Gold Coast Campus)SouthportAustralia
  2. 2.Protein Research CenterShahid Beheshti University, G.C.TehranIran
  3. 3.Fatigue and Fracture Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical EngineeringIran University of Science and TechnologyTehranIran

Personalised recommendations