Advertisement

CNT-Based Nanocomposites

  • Moones RahmandoustEmail author
  • Majid R. Ayatollahi
Chapter
  • 718 Downloads
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 39)

Abstract

As one of the major classes of polymeric materials, various types of epoxies are used extensively in different engineering applications such as automotive and electronic industries. Epoxy-based composite materials have become proper substitutes for traditional materials like metals, metal alloys, wood, etc. due to their prominent properties such as lightness, ease of processing and relatively low cost. However, one of the major drawbacks in their increasing applications is their poor surface properties.

Keywords

Fracture Toughness Graphene Oxide Percolation Threshold Mixed Mode Neat Epoxy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aguilar, J.O., Bautista-Quijano, J.R., Avilés, F.: Influence of carbon nanotube clustering on the electrical conductivity of polymer composite films. Polym. Lett. 4(5), 292–299 (2010)CrossRefGoogle Scholar
  2. Aihara, J.: Lack of superaromaticity in carbon nanotubes. Phys. Chem. 98(39), 9773–9776 (1994)CrossRefGoogle Scholar
  3. Ajayan, P.M., Schadler, L.S., Giannaris, G., Rubio, A.: Single-walled carbon nanotube–polymer composites: strength and weakness. Adv. Mater. 12(10), 750–753 (2000)Google Scholar
  4. Aliha, M.R.M., Ayatollahi, M.R.: On mixed-mode I/II crack growth in dental resin materials. Scripta Mater. 59(2), 258–261 (2008)CrossRefGoogle Scholar
  5. Aliha, M.R.M., Ayatollahi, M.R.: Geometry effects on fracture behaviour of polymethyl methacrylate. Mater. Sci. Eng. A 527(3), 526–530 (2010)CrossRefGoogle Scholar
  6. Alishahi, E., Shadlou, S., Doagou-R, S., Ayatollahi, M.R.: Effects of carbon nanoreinforcements of different shapes on the mechanical properties of epoxy-based nanocomposites. Macromolecular 298(6), 670–678 (2013)Google Scholar
  7. Allaoui, A., Bai, S., Cheng, H.M., Bai, J.B.: Mechanical and electrical properties of a MWNT/epoxy composite. Compos. Sci. Technol. 62(15), 1993–1998 (2002)CrossRefGoogle Scholar
  8. Al-Saleh, M.H., Saadeh, W.: Hybrids of conductive polymer nanocomposites. Mater. Des. 52, 1071–1076 (2013)CrossRefGoogle Scholar
  9. Andrews, R., Jacques, D., Minot, M., Rantell, T.: Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromol. Mater. Eng. 287(6), 395–403 (2002a)CrossRefGoogle Scholar
  10. Andrews, R., Jacques, D., Qian, D., Rantell, T.: Multiwall carbon nanotubes: synthesis and application. Acc. Chem. Res. 35(12), 1008–1017 (2002b)CrossRefGoogle Scholar
  11. Araki, W., Nemoto, K., Adachi, T., Yamaji, A.: Fracture toughness for mixed mode I/II of epoxy resin. Acta. Mater. 53(3), 869–861 (2005)Google Scholar
  12. Ashton, H.C.: The Incorporation of Nanomaterials. Polymer Nanocomposites, pp. 21–44. CRC Press, New York (2010)Google Scholar
  13. Ayatollahi, M.R., Aliha, M.R.M.: Analysis of a new specimen for mixed mode fracture tests on brittle materials. Eng. Fract. Mech. 76(11), 1563–1573 (2009)CrossRefGoogle Scholar
  14. Ayatollahi, M.R., Aliha, M.R.M., Hassani, M.M.: Mixed mode brittle fracture in PMMA—an experimental study using SCB specimens. Mater. Sci. Engng. A 417(1–2), 348–356 (2006)CrossRefGoogle Scholar
  15. Ayatollahi, M.R., Alishahi, E., Shadlou, S.: Mechanical behavior of nanodiamond/epoxy nanocomposites. Int. J. Fract. 170(1), 95–100 (2011a)Google Scholar
  16. Ayatollahi, M.R., Shadlou, S., Shokrieh, M.M.: Multiscale modeling for mechanical properties of carbon nanotube reinforced nanocomposites subjected to different types of loading. Compos. Struct. 93(9), 2250–2259 (2011b)CrossRefGoogle Scholar
  17. Ayatollahi, M.R., Shadlou, S., Shokrieh, M.M.: Fracture toughness of epoxy/multi-walled carbon nanotube nano-composites under bending and shear loading conditions. Mater. Des. 32(4), 2115–2124 (2011c)CrossRefGoogle Scholar
  18. Ayatollahi, M.R., Shadlou, S., Shokrieh, M.M., Chitsazzadeh, M.: d. Effect of multi-walled carbon nanotube aspect ratio on mechanical and electrical properties of epoxy-based nanocomposites. Polym. Test. 30(5), 548–556 (2011d)CrossRefGoogle Scholar
  19. Ayatollahi, M.R., et al.: Mechanical and electrical properties of epoxy/MWNT-nanoclay nanocomposites. Iran. Polym. J. 20(10), 832–843 (2011e)Google Scholar
  20. Ayatollahi, M.R., Shadlou, S., Shokrieh, M.M.: Mixed mode brittle fracture in epoxy/multi-walled carbon nanotube nanocomposites. Eng. Fract. Mech. 78(14), 2620–2632 (2011f)CrossRefGoogle Scholar
  21. Ayatollahi, M.R., Shadloua, S., Shokrieh, M.M.: Correlation between aspect ratio of MWCNTs and mixed mode fracture of epoxy based nanocomposites. Mater. Sci. Eng. A 528(19–20), 6173–6178 (2011g)CrossRefGoogle Scholar
  22. Ayatollahi, M.R., Doagou-Rad, S., Shadlou, S.: Nano-/microscale investigation of tribological and mechanical properties of epoxy/MWNT nanocomposites. Macromol. Mater. Eng. (Wiley) 297(7), 689–701 (2012a)Google Scholar
  23. Ayatollahi, M.R., Alishahi, E., Doagou-R, S., Shadlou, S.: Tribological and mechanical properties of low content nanodiamond/epoxy nanocomposites. Compos. B 43(8), 3425–3430 (2012b)Google Scholar
  24. Bahr, J.L., et al.: Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode. J. Am. Chem. Soc. 123(27), 6536–6542 (2001)CrossRefGoogle Scholar
  25. Bai, J.: Evidence of the reinforcement role of chemical vapour deposition multi-walled carbon nanotubes in a polymer matrix. Carbon 41(6), 1325–1328 (2003)CrossRefGoogle Scholar
  26. Barber, A.H., Cohen, S.R., Kenig, S., Wagner, H.D.: Interfacial fracture energy measurements for multi-walled carbon nanotubes pulled from a polymer matrix. Compos. Sci. Technol. 64(15), 2283–2289 (2004)CrossRefGoogle Scholar
  27. Bhattacharjee, D., Knott, J.F.: Effect of mixed mode I and II loading on the fracture surface of polymethyl methacrylate (PMMA). Int. J. Fract. 72(4), 359–381 (1995)CrossRefGoogle Scholar
  28. Bhattacharyya, S., Sinturel, C., Salvetat, J.P., Saboungi, M.L.: Proteinfunctionalized CNT polymer composites. Appl. Phys. Lett. 86, 113104 (2005)CrossRefGoogle Scholar
  29. Bhattacharyya, S., Salvetat, J.P., Saboungi, M.L.: Reinforcement of semicrystalline polymers with collagen modified SWCNTs. Appl. Phys. Lett. 88, 233119 (2006)CrossRefGoogle Scholar
  30. Bhuiyan, M.A., Pucha, R.V., Karevan, M., Kalaitzidou, K.: Tensile modulus of carbon nanotube/polypropylene composites—a computational study based on experimental characterization. Comput. Mater. Sci. 60(8), 2347–2353 (2011)CrossRefGoogle Scholar
  31. Bhuiyan, M.A., et al.: Defining the lower and upper limit of the effective modulus of CNT/polypropylene composites through integration of modeling and experiments. Compos. Struct. 95, 80–87 (2013)CrossRefGoogle Scholar
  32. Bin, Y., Kitanaka, M., Zhu, D., Matsuo, M.: Development of highly oriented polyethylene filled with aligned carbon nanotubes by gelation/crystallization from solutions. Macromolecules 36(6), 6213–6219 (2003)CrossRefGoogle Scholar
  33. Blake, R., et al.: Reinforcement of poly(vinyl chloride) and polystyrene using chlorinated polypropylene grafted carbon nanotubes. J. Mater. Chem. 16(43), 4206–4213 (2006)CrossRefGoogle Scholar
  34. Blanco, J., García, E.J., Villoria, R.G., Wardle, B.L.: Limiting mechanisms of mode I interlaminar toughening of composites reinforced with aligned carbon nanotubes. J. Compos. Mater. 43(8), 825–841 (2009)CrossRefGoogle Scholar
  35. Blond, D., et al.: Enhancement of modulus, strength, and toughness in poly(methyl methacrylate)-based composites by the incorporation of poly(methyl methacrylate)-functionalised nanotubes. Adv. Funct. Mater. 16(12), 1608–1614 (2006)CrossRefGoogle Scholar
  36. Böger, L., Sumfleth, J., Hedemann, H., Schulte, K.: Improvement of fatigue life by incorporation of nanoparticles in glass fibre reinforced epoxy. Compos. A 41(10), 1419–1424 (2010)CrossRefGoogle Scholar
  37. Breton, Y., et al.: Mechanical properties of multiwall carbon nanotubes/epoxy composites: influence of network morphology. Carbon 42(5–6), 1027–1030 (2004)CrossRefGoogle Scholar
  38. Brian, J., Sinha, B.K.: Tribological applications of polymers and their composites: past, present and future prospects. Tribology of Polymeric Nanocomposites, pp. 7–11. Elsevier Science, s.l. (2008)Google Scholar
  39. Cadek, M.: Mechanical and thermal properties of multiwalled carbon nanotube reinforced polymer composites. San Diego, s.n. (2002)Google Scholar
  40. Cadek, M., et al.: Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Appl. Phys. Lett. 81(27), 5123–5125 (2002)CrossRefGoogle Scholar
  41. Cadek, M., et al.: Reinforcement of polymers with carbon nanotubes: the role of nanotube surface area. Nano Lett. 4(2), 353–356 (2004)CrossRefGoogle Scholar
  42. Cai, H., Yan, F.Y., Xue, Q.J.: Investigation of tribological properties of polyimide/carbon nanotube nanocomposites. Mater. Sci. Eng. A 364(1–2), 94 (2004)CrossRefGoogle Scholar
  43. Campo, M., Jiménez-Suárez, A., Ureña, A.: Effect of type, percentage and dispersion method of multi-walled carbon nanotubes on tribological properties of epoxy composites. Wear 324, 100–108 (2015)CrossRefGoogle Scholar
  44. Chang, T.E., et al.: Microscopic mechanism of reinforcement in SWCNT–polypropylene nanocomposite. Polymer 46(2), 439–444 (2005)CrossRefGoogle Scholar
  45. Chen, J., et al.: Solution properties of single-walled carbon nanotubes. Science 282(5386), 95–98 (1998)CrossRefGoogle Scholar
  46. Chen, L., Pang, X.J., Yu, Z.L.: Study on polycarbonate/multi-walled carbon nanotubes composite produced by melt processing. Mater. Sci. Eng. A 457(1–2), 287–291 (2007)CrossRefGoogle Scholar
  47. Chen, Z., et al.: Improving the mechanical properties of multiwalled carbon nanotube/epoxy nanocomposites using polymerization in a stirring plasma system. Compos. Part A 56, 172–180 (2014)Google Scholar
  48. Coleman, J.N., et al.: High performance nanotube-reinforced plastics: understanding the mechanism of strength increase. Adv. Funct. Mater. 14(8), 791–798 (2004)CrossRefGoogle Scholar
  49. Coleman, J.N., Khan, U., Blau, W.J., Gun’ko, Y.K.: Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44(9), 1624–1652 (2006)Google Scholar
  50. Cooper, C.A., Young, R.J., Halsall, M.: Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy. Compos. A 32(3–4), 401–411 (2001)CrossRefGoogle Scholar
  51. Cooper, C.A., et al.: Distribution and alignment of carbon nanotubes and nanofibrils in a polymer matrix. Compos. Sci. Technol. 62(7–8), 1105–1112 (2002)CrossRefGoogle Scholar
  52. Cui, L.J., et al.: Functionalization of multi-wall carbon nanotubes to reduce the coefficient of the friction and improve the wear resistance of multi-wall carbon nanotube/epoxy composites. Carbon 54, 277–282 (2013)CrossRefGoogle Scholar
  53. Dai, L., Mau, A.W.H.: Controlled synthesis and modification of carbon nanotubes and C60: carbon nanostructures for advanced polymeric composite materials. Adv. Mater. 13(12–13), 899–913 (2001)CrossRefGoogle Scholar
  54. Dalton, A.B., et al.: Super-tough carbon-nanotube fibres. Nature 423, 703 (2003)CrossRefGoogle Scholar
  55. Dasari, A., Yu, Z.Z., Mai, Y.W.: Fundamental aspects and recent progress on wear/scratch damage in polymer nanocomposites. Mater. Sci. Eng. R Rep. 63(2), 31–80 (2009)CrossRefGoogle Scholar
  56. Dondero, W.E., Gorga, R.E.: Morphological and mechanical properties of CNT–polymer composites via melt compounding. J. Polym. Sci. Part B: Polym. Phys. 44(5), 864–878 (2006)CrossRefGoogle Scholar
  57. Dong, B., Yang, Z., Huang, Y., Li, H.L.: Study on tribological properties of multiwalled carbon nanotubes/epoxy resin nanocomposite. Tribol. Lett. 20(3–4), 251–254 (2005)CrossRefGoogle Scholar
  58. Du, F., Fischer, J.E., Winey, K.I.: Coagulation method for preparing singlewalled carbon nanotube/poly(methyl methacrylate) composites and their modulus, electrical conductivity, and thermal stability. J. Polym. Sci. Part B: Polym. Phys. 41(24), 3333–3338 (2003)CrossRefGoogle Scholar
  59. Faber, K.T., Evans, A.G.: Crack deflection processes—I. Theory Acta Metall. 31(4), 565–576 (1983)CrossRefGoogle Scholar
  60. Fiedler, B., et al.: Fundamental aspects of nano-reinforced composites. Compos. Sci. Technol. 66(16), 3115–3125 (2006)CrossRefGoogle Scholar
  61. Fritzsche, J., Lorenz, H., Klüppel, M.: CNT based elastomer-hybrid-nanocomposites with promising mechanical and electrical properties. Macromol. Mater. Eng. 294(9), 551–560 (2009)CrossRefGoogle Scholar
  62. Gandhi, R.A., Palanikumar, K., Ragunath, B.K., Davim, J.P.: Role of carbon nanotubes (CNTs) in improving wear properties of polypropylene (PP) in dry sliding condition. Mater. Des. 48, 52–57 (2013)CrossRefGoogle Scholar
  63. Gojny, F.H., Nastalczyk, J., Roslaniec, Z., Schulte, K.: Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites. Chem. Phys. Lett. 370(5–6), 820–824 (2003)CrossRefGoogle Scholar
  64. Gojny, F.H., et al.: Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content. Compos. Sci. Technol. 64(15), 2663–2671 (2004)Google Scholar
  65. Gojny, F.H., Wichmann, M.H.G., Fiedler, B., Schulte, K.: Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites—a comparative study. Compos. Sci. Technol. 65(15–16), 2300–2313 (2005)CrossRefGoogle Scholar
  66. Gorga, R.E., Cohen, R.E.: Toughness enhancements in poly(methyl methacrylate) by addition of oriented multiwall carbon nanotubes. J. Polym. Sci. Part B: Polym. Phys. 40(14), 2690–2702 (2004)CrossRefGoogle Scholar
  67. Gorrasi, J., et al.: Incorporation of carbon nanotubes into polyethylene by high energy ball milling: morphology and physical properties. J. Polym. Sci. Part B: Polym. Phys. 45(5), 597–606 (2007)CrossRefGoogle Scholar
  68. Grady, B.P., Pompeo, F., Shambaugh, R.L., Resasco, D.E.: Nucleation of polypropylene crystallization by SWCNTs. J. Phys. Chem. B 106(23), 5852–5858 (2002)CrossRefGoogle Scholar
  69. Guo, P., et al.: Fabrication and mechanical properties of well-dispersed multiwalled carbon nanotubes/epoxy composites. Compos. Sci. Technol. 67(15–16), 3331–3337 (2007)CrossRefGoogle Scholar
  70. Haggenmueller, R., et al.: Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem. Phys. Lett. 330(3–4), 219–225 (2000)CrossRefGoogle Scholar
  71. Haggenmueller, R., Zhou, W., Fischer, J.E., Winey, K.I.: Production and characterization of polymer nanocomposites with highly aligned single-walled carbon nanotubes. J. Nanosci. Nanotechnol. 3(1–2), 1105–1110 (2003)Google Scholar
  72. Han, J.H., et al.: CNT buckypaper/thermoplastic polyurethane composites with enhanced stiffness, strength and toughness. Compos. Sci. Technol. 103, 63–71 (2014)CrossRefGoogle Scholar
  73. He, X.J., et al.: Positive temperature coefficient effect in multiwalled carbon nanotube/high-density polyethylene composites. Appl. Phys. Lett. 86(6), 062112 (2005)CrossRefGoogle Scholar
  74. Hough, L.A., Islam, M.F., Janmey, P.A., Yodh, A.G.: Viscoelasticity of singlewall carbon nanotube suspensions. Phys. Rev. Lett. 93(6), 168102 1–4 (2004)Google Scholar
  75. Hou, Y., et al.: Functionalised few-walled carbon nanotubes for mechanical reinforcement of polymeric composites. ACS Nano 3(5), 1057–1062 (2009)CrossRefGoogle Scholar
  76. Huang, G.L.: Efficient load transfer to polymer-grafted MWCNTs in polymer composites. Adv. Funct. Mater. 487–91 (2004)Google Scholar
  77. Hull, D.: An Introduction to Composite Materials. Cambridge University Press, s.l. (1981)Google Scholar
  78. Jen, M.H.R.: Experiments and Simulations. DEStech Publications, s.l. (2012)Google Scholar
  79. Jia, Z., et al.: Study on poly(methyl methacrylate)/carbon nanotube composites. Mater. Sci. Eng. A 271(1–2), 395–400 (1999)CrossRefGoogle Scholar
  80. Jin, Z., Pramoda, K.P., Xu, G., Goh, S.H.: Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly(methyl methacrylate) composites. Chem. Phys. Lett. 337(1–3), 43–47 (2001)CrossRefGoogle Scholar
  81. Jin, Z., Pramoda, K.P., Goh, S.H., Xu, G.: PVDF-assisted melt blending of MWCNT/PMMA composites. Mater. Res. Bull. 37(2), 271–278 (2002)CrossRefGoogle Scholar
  82. Jose, M.V., et al.: Polypropylene/CNT nanocomposite fibers: process–morphology–property relationships. J. Appl. Polym. Sci. 103(6), 3844–3850 (2007)CrossRefGoogle Scholar
  83. Kalin, M., Zalaznik, M., Novak, S.: Wear and friction behaviour of poly-ether-ether-ketone (PEEK) filled with graphene, WS2 and CNT nanoparticles. Wear WEA101203 (2014)Google Scholar
  84. Kanagaraj, S., et al.: Mechanical properties of high density polyethylene/carbon nanotube composites. Compos. Sci. Technol. 67(15–16), 3071–3077 (2007)CrossRefGoogle Scholar
  85. Kearns, J.C., Shambaugh, R.L.: Polypropylene fibers reinforced with carbon nanotubes. J. Appl. Polym. Sci. 86(6), 2079–2084 (2002)CrossRefGoogle Scholar
  86. Khan, U., Coleman, J.N.: The effect of solvent choice on the mechanical properties of carbon nanotube–polymer composites. Compos. Sci. Technol. 3158–3167 (2007)Google Scholar
  87. Kim, K.H., Jo, W.H.: Improvement of tensile properties of poly(methyl methacrylate) by dispersing multi-walled carbon nanotubes functionalized with poly(3-hexylthiophene)-graft-poly(methyl methacrylate). Compos. Sci. Technol. 68(9), 2120–2124 (2008)CrossRefGoogle Scholar
  88. Kim, H.M., et al.: Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst. Appl. Phys. Lett. 84(4), 589–591 (2004a)CrossRefGoogle Scholar
  89. Kim, H.M., et al.: Charge transport properties of composites of multiwalled carbon nanotube with metal catalyst and polymer: application to electromagnetic interference shielding. Curr. Appl. Phys. 4(6), 577–580 (2004b)CrossRefGoogle Scholar
  90. Kim, H.S., et al.: Electrical and mechanical properties of poly(L-lactide)/carbon nanotubes/clay nanocomposites. J. Nanosci. Nanotechnol. 10(5), 3576–3580 (2010)CrossRefGoogle Scholar
  91. Lahelin, M., et al.: In situ polymerized nanocomposites: polystyrene/CNT and poly(methyl methacrylate)/CNT composites. Compos. Sci. Technol. 71(6), 900–907 (2011)CrossRefGoogle Scholar
  92. Lee, S.M., Shin, M.W., Jang, H.: Effect of carbon-nanotube length on friction and wear of polyamide 6,6 nanocomposites. Wear 103–110 (2014)Google Scholar
  93. Leelapornpisit, W., et al.: Effect of carbon nanotubes on the crystallization and properties of polypropylene. J. Polym. Sci. Part B 43(18), 2445–2453 (2005)CrossRefGoogle Scholar
  94. Li, Q., Zaiser, M., Koutsos, V.: Carbon nanotube/epoxy resin composites using a block copolymer as a dispersing agent. Phys. Status Solidi (a) 201(13), 89–91 (2004a)CrossRefGoogle Scholar
  95. Li, X., et al.: Nanomechanical characterization of single-walled carbon nanotube reinforced epoxy composites. Nanotechnology 15(11), 1416–1423 (2004b)CrossRefGoogle Scholar
  96. Li, J., Wong, P.S., Kim, J.K.: Hybrid nanocomposites containing carbon nanotubes and graphite nanoplatelets. Mater. Sci. Eng. A 483–484, 660–663 (2008)CrossRefGoogle Scholar
  97. Liao, Y.H., et al.: Investigation of the dispersion process of SWCNTs/SC15 epoxy resin nanocomposites. Mater. Sci. Eng. A 385(1–2), 175–181 (2004)CrossRefGoogle Scholar
  98. Lin, Y., Taylor, S., Huang, W., Sun, Y.: Characterization of fractions from repeated functionalization reactions of carbon nanotubes. Phys. Chem. 107(4), 914–919 (2003)CrossRefGoogle Scholar
  99. Liu, L., Grunlan, J.C.: Clay assisted dispersion of carbon nanotubes in conductive epoxy nanocomposites. Adv. Funct. Mater. 17(14), 2343–2348 (2007)CrossRefGoogle Scholar
  100. Liu, T., et al.: Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. Macromolecules 37(9), 7214–7222 (2004)CrossRefGoogle Scholar
  101. Liu, L., Barber, A., Nuriel, S., Wagner, H.D.: Mechanical properties of functionalized SWCNT/PVA nanocomposites. Adv. Funct. Mater. 15(6), 975–980 (2005)CrossRefGoogle Scholar
  102. Liu, L., et al.: Comparison of covalently and noncovalently functionalized carbon nanotubes in epoxy. Macromol. Rapid Commun. 30(8), 627–632 (2009)CrossRefGoogle Scholar
  103. Liu, L., et al.: The effects of the variations of carbon nanotubes on the micro-tribological behavior of carbon nanotubes/bismaleimide nanocomposite. Compos. A 38(9), 1957–1964 (2007a)CrossRefGoogle Scholar
  104. Liu, L.Q., et al.: One step electrospun nanofiber-based composite ropes. Appl. Phys. Lett. 9(8), 083108 (2007b)CrossRefGoogle Scholar
  105. Liu, L.Q., Tasis, D., Prato, M., Wagner, H.D.: Tensile mechanics of electrospun multiwalled nanotube/poly(methyl methacrylate) nanofibers. Adv. Mater. 19(9), 1228–1233 (2007c)CrossRefGoogle Scholar
  106. López Manchado, M.A., Valentini, L., Biagiotti, J., Kenny, J.M.: Thermal and mechanical properties of single-walled carbon nanotubes-polypropylene composites prepared by melt processing. Carbon 43(7), 1499–1505 (2005)CrossRefGoogle Scholar
  107. Maccagno, T.M., Knott, J.F.: The fracture behaviour of PMMA in mixed modes I and II. Eng. Fract. Mech. 34(1), 65–86 (1989)CrossRefGoogle Scholar
  108. Manoharan, M.P., et al.: The interfacial strength of carbon nanofiber epoxy composite using single fiber pullout experiments. Nanotechnology 20(29), 295701 (2009)CrossRefGoogle Scholar
  109. Ma, P.C., Kim, J.K., Tang, B.Z.: Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites. Compos. Sci. Technol. 67(14), 2965–2972 (2007)CrossRefGoogle Scholar
  110. Ma, P.C., Siddiqui, N.A., Marom, G., Kim, J.K.: Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos. A 41(10), 1345–1367 (2010)CrossRefGoogle Scholar
  111. Masuda, J., Torkelson, J.M.: Dispersion and major property enhancements in polymer/multiwall carbon nanotube nanocomposites via solid-state shear pulverization followed by melt mixing. Macromolecules 41(16), 5974–5977 (2008)CrossRefGoogle Scholar
  112. McIntosh, D., Khabashesku, V.N., Barrera, E.V.: Nanocomposite fiber systems processed from fluorinated SWCNTs and a polypropylene matrix. Chem. Mater. 18(9), 4561–4569 (2006)CrossRefGoogle Scholar
  113. McIntosh, D., Khabashesku, V.N., Barrera, E.V.: Benzoyl peroxide initiated in situ functionalization, processing and mechanical properties of SWCNT–polypropylene composite fibers. J. Phys. Chem. C 111(4), 1592–1600 (2007)CrossRefGoogle Scholar
  114. Meincke, O., et al.: Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer 45(3), 739–748 (2004)CrossRefGoogle Scholar
  115. Mikelson, E.T., et al.: Fluorination of single-wall carbon nanotubes. Chem. Phys. Lett. 296(1–2), 188–194 (1998)CrossRefGoogle Scholar
  116. Mirjalili, V., Hubert, P.: Modelling of the carbon nanotube bridging effect on the toughening of polymers and experimental verification. Compos. Sci. Technol. 70(10), 1537–1543 (2010)CrossRefGoogle Scholar
  117. Mittal, G., et al.: A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J. Ind. Eng. Chem. 21, 11–25 (2015)CrossRefGoogle Scholar
  118. Miyagawa, H., Drzal, L.T.: Thermophysical and impact properties of epoxy nanocomposites reinforced by SWCNTs. Polymer 45(15), 5163–5170 (2004)CrossRefGoogle Scholar
  119. Moore, E.M., et al.: Enhancing the strength of polypropylene fibers with CNTs. J. Appl. Polym. Sci. 93(6), 2926–2933 (2004)CrossRefGoogle Scholar
  120. Ogasawara, T., Ishida, Y., Ishikawa, T., Yokota, R.: Characterization of multi-walled carbon nanotube/phenylethynyl terminated polyimide composites. Compos. A 35(1), 67–74 (2004)CrossRefGoogle Scholar
  121. Paiva, M.C., et al.: Mechanical and morphological characterization of polymer–carbon nanocomposites from functionalized CNTs. Carbon 42(14), 2849–2854 (2004)CrossRefGoogle Scholar
  122. Park, C., et al.: Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chem. Phys. Lett. 364(3–4), 303–308 (2002)CrossRefGoogle Scholar
  123. Park, J.M., Kim, D.S., Lee, J.R., Kim, T.W.: Nondestructive damage sensitivity and reinforcing effect of CNT/epoxy composites using electromicromechanical technique. Mater. Sci. Eng. C 23(6–8), 971–975 (2003)CrossRefGoogle Scholar
  124. Pekker, S., et al.: Hydrogenation of carbon nanotubes and graphite in liquid ammonia. Phys. Chem. 105(33), 7938–7943 (2001)CrossRefGoogle Scholar
  125. Potschke, P., Bhattacharyya, A.R., Janke, A., Goering, H.: Melt mixing of polycarbonate/multi-wall carbon nanotube composites. Compos. Interf. 10(4), 389–404 (2003)CrossRefGoogle Scholar
  126. Pötschke, P., Bhattacharyya, A.R., Janke, A.: Carbon nanotube-filled polycarbonate composites produced by melt mixing and their use in blends with polyethylene. Carbon 42(5), 965–969 (2004)CrossRefGoogle Scholar
  127. Probst, O., Moore, E.M., Resasco, D.E., Grady, B.P.: Nucleation of PVA crystallization by SWCNTs. Polymer 45(13), 4437–4443 (2004)CrossRefGoogle Scholar
  128. Putz, K.W., Mitchell, C.A., Krishnamoorti, R., Green, P.F.: Elastic modulus of single-walled carbon nanotube/poly(methyl methacrylate) nanocomposites. J. Polym. Sci. Part B: Polym. Phys. 42(12), 2286–2293 (2004)CrossRefGoogle Scholar
  129. Qian, D., Dickey, E.C., Andrews, R., Rantell, T.: Load transfer and deformation mechanisms in carbon nanotube–polystyrene composites. Appl. Phys. Lett. 76(20), 2868–2870 (2000)CrossRefGoogle Scholar
  130. Rahmanian, S., et al.: Growth of carbon nanotubes on silica microparticles and their effects on mechanical properties of polypropylene nanocomposites. Mater. Des. 69, 181–189 (2014)CrossRefGoogle Scholar
  131. Ren, Y., Li, F., Cheng, H.M., Liao, K.: Tension–tension fatigue behavior of unidirectional single-walled carbon nanotube. Carbon 41(11), 2159–2179 (2003)CrossRefGoogle Scholar
  132. Ruan, S.L., Gao, P., Yang, X.G., Yu, T.X.: Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes. Polymer 44(19), 5643–5654 (2003)CrossRefGoogle Scholar
  133. Ruan, S., Gao, P., Yu, T.X.: Ultra-strong gel-spun UHMWPE fibers reinforced using multiwalled carbon nanotubes. Polymer 47(5), 1604–1611 (2006)CrossRefGoogle Scholar
  134. Ryan, K.P., et al.: Carbon nanotubes for reinforcements of plastics? A case study with PVA. Compos. Sci. Technol. 67(7–8), 1640–1649 (2007)CrossRefGoogle Scholar
  135. Sabba, Y., Thomas, E.L.: High-concentration dispersion of single-wall carbon nanotubes. Macromolecules 37(13), 4815–4820 (2004)CrossRefGoogle Scholar
  136. Safadi, B., Andrews, R., Grulke, E.A.: Multiwalled carbon nanotube polymer composites: synthesis and characterization of thin films. J. Appl. Polym. Sci. 84(14), 2660–2669 (2002)CrossRefGoogle Scholar
  137. Safdari, M., Al-Haik, M.S.: Synergistic electrical and thermal transport properties of hybrid polymeric nanocomposites based on carbon nanotubes and graphite nanoplatelets. Carbon 64, 111–121 (2013)CrossRefGoogle Scholar
  138. Sandler, J.K.W., et al.: Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44(19), 5893–5899 (2003)CrossRefGoogle Scholar
  139. Santangelo, S., et al.: Polylactide and carbon nanotubes/smectite-clay nanocomposites: preparation, characterization, sorptive and electrical properties. Appl. Clay Sci. 53(2), 188–194 (2011)CrossRefGoogle Scholar
  140. Satapathy, B.K., Weidisch, R., Pötschke, P., Janke, A.: Tough-to-brittle transition in multiwalled carbon nanotube (MWNT)/polycarbonate nanocomposites. Compos. Sci. Technol. 67(5), 867–879 (2007)CrossRefGoogle Scholar
  141. Schmid, C.F., Klingenberg, D.J.: Mechanical flocculation in flowing fiber suspensions. Phys. Rev. Lett. 84(2), 290–293 (2000)CrossRefGoogle Scholar
  142. Seyhan, A.T., Tanoğlu, M., Schulte, K.: Tensile mechanical behavior and fracture toughness of Mwcnt and Dwcnt modified vinyl-ester/polyester hybrid nanocomposites produced by 3-roll milling. Mater. Sci. Eng. A 523(1–2), 85–92 (2009)CrossRefGoogle Scholar
  143. S-Hadavand, B., Mahdavi Javid, K., Gharagozlou, M.: Mechanical properties of multi-walled carbon nanotube/epoxy polysulfide nanocomposite. Mater. Des. 50, 62–67 (2013)Google Scholar
  144. Shadlou, S., Alishahi, E., Ayatollahi, M.R.: Fracture behavior of epoxy nanocomposites reinforced with different carbon nano-reinforcements. Compos. Struct. 95, 577–581 (2013)CrossRefGoogle Scholar
  145. Shaffer, M.S.P., Windle, A.H.: Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. Adv. Mater. 11(11), 937–941 (1999)CrossRefGoogle Scholar
  146. Shen, X.J., Pei, X.Q., Liu, Y., Fu, S.Y.: Tribological performance of carbon nanotube–graphene oxide hybrid/epoxy composites. Compos. Part B 57, 120–125 (2014)Google Scholar
  147. Shim, M., Wang, C., Guyot-Sionnest, P.: Charge-tunable optical properties in colloidal semiconductor nanocrystals. Phys. Chem. B 105(12), 2369–2373 (2001)CrossRefGoogle Scholar
  148. Shofner, M.L., Khabashesku, V.N., Barrera, E.V.: Processing and mechanical properties of fluorinated SWCNT–polyethylene composites. Chem. Mater. 18(4), 906–913 (2006)CrossRefGoogle Scholar
  149. Shokrieh, M.M., Kefayati, A.R., Chitsazzadeh, M.: Investigation of mechanical properties of clay/epoxy nanocomposites. In: Kish Island-Iran, the 2nd International Conference on Composites: Characterization, Fabrication & Application (CCFA-2) (2010)Google Scholar
  150. Shokrieh, M.M., Esmkhani, M., Haghighatkhah, A.R., Zhao, Z.: Flexural fatigue behavior of synthesized graphene/carbon-nanofiber/epoxy hybrid nanocomposites. Mater. Des. 62, 401–408 (2014)CrossRefGoogle Scholar
  151. Spitalsky, Z., Krontiras, C.A., Georga, S.N., Galiotis, C.: Effect of oxidation treatment of multiwalled carbon nanotubes on the mechanical and electrical properties of their epoxy composites. Compos. A 40(6–7), 778–783 (2009a)CrossRefGoogle Scholar
  152. Spitalsky, Z., et al.: Modification of carbon nanotubes and its effect on properties of carbon nanotube/epoxy nanocomposites. Polym. Compos. 30(10), 1378–1387 (2009b)CrossRefGoogle Scholar
  153. Spitalsky, Z., Tasis, D., Papagelis, K., Galiotis, C.: Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 56(3), 357–401 (2010)CrossRefGoogle Scholar
  154. Sui, G., Zhong, W.H., Liu, M.C., Wu, P.H.: Enhancing mechanical properties of an epoxy resin using “liquid nano-reinforcements”. Mater. Sci. Eng. A 512(1–2), 139–142 (2009)CrossRefGoogle Scholar
  155. Sulong, A.B., et al.: Electrical conductivity behaviour of chemical functionalized MWCNTs epoxy nanocomposites. Eur. J. Sci. Res. 59(1), 13–21 (2009)Google Scholar
  156. Sun, Y.P., et al.: Soluble dendron-functionalized carbon nanotubes: preparation, characterization. Chem. Mater. 13(9), 2864–2869 (2001)CrossRefGoogle Scholar
  157. Sun, Y.P., Fu, K., Lin, Y., Huang, W.: Functionalized carbon nanotubes: properties and applications. Acc. Chem. Res. 35(12), 1096–1104 (2002)CrossRefGoogle Scholar
  158. Sun, L., et al.: Mechanical properties of surface-functionalized SWCNT/epoxy composites. Carbon 46(2), 320–328 (2008)CrossRefGoogle Scholar
  159. Switzer, L.H., Klingenberg, D.J.: Flocculation in simulations of sheared fiber suspensions. Int. J. Multiph. Flow 30(1), 67–87 (2004)CrossRefGoogle Scholar
  160. Tang, W., Santare, M.H., Advani, S.G.: Melt processing and mechanical property characterization of multi-walled carbon nanotube high density polyethylene composite films. Carbon 41(14), 2779–2785 (2003)CrossRefGoogle Scholar
  161. Thostenson, E.T., Chou, T.W.: Aligned multi-walled carbon nanotube reinforced composites: processing and mechanical characterization. J. Phys. D Appl. Phys. 35(16), 77–80 (2002)CrossRefGoogle Scholar
  162. Thostenson, E.T., Chou, T.W.: Processing–structure–multi-functional property relationship in carbon nanotube/epoxy composites. Carbon 44(14), 3022–3029 (2006)CrossRefGoogle Scholar
  163. Tong, X., et al.: Surface modification of single-walled carbon nanotubes with polyethylene via in situ Ziegler-Natta polymerization. J. Appl. Polym. Sci. 92(6), 3697–3700 (2004)CrossRefGoogle Scholar
  164. Tong, L., Sun, X., Tan, P.: Effect of long multi-walled carbon nanotubes on delamination toughness of laminated composites. J. Compos. Mater. 42(1), 5–23 (2008)Google Scholar
  165. Tseng, C.H., Wang, C.C., Chen, C.Y.: Functionalizing carbon nanotubes by plasma modification for the preparation of covalent-integrated epoxy composites. Chem. Mater. 19(2), 308–315 (2007)CrossRefGoogle Scholar
  166. Valentini, L., et al.: Use of plasma fluorinated single-walled carbon nanotubes for the preparation of nanocomposites with epoxy matrix. Compos. Sci. Technol. 68(3–4), 1008–1014 (2008)CrossRefGoogle Scholar
  167. Velasco-Santos, C., et al.: Dynamical–mechanical and thermal analysis of carbon nanotube–methyl-ethyl methacrylate nanocomposites. J. Phys. D Appl. Phys. 36(12), 1423–1428 (2003a)CrossRefGoogle Scholar
  168. Velasco-Santos, C., et al.: Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization. Chem. Mater. 15(23), 4470–4475 (2003b)CrossRefGoogle Scholar
  169. Vigolo, B., et al.: An experimental approach to the percolation of sticky nanotubes. Science 309(5736), 920–923 (2005)CrossRefGoogle Scholar
  170. Wang, Q., Pei, X.: The influence of nanoparticle fillers on the friction and wear behavior of polymer matrices. Tribology of Polymeric Nanocomposites, pp. 63–64. Elsevier Science, s.l. (2008)Google Scholar
  171. Wang, Z., et al.: Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites. Compos. A 35(10), 1225–1232 (2004)CrossRefGoogle Scholar
  172. Wang, Y., Cheng, R., Liang, L., Wang, Y.: Study on the preparation and characterization of ultra high molecular weight polyethylene–carbon nanotubes composite fiber. Compos. Sci. Technol. 65(5), 793–797 (2005)CrossRefGoogle Scholar
  173. Wang, M., Pramoda, K.P., Goh, S.H.: Enhancement of interfacial adhesion and dynamic mechanical properties of PMMA–MWCNT composites with amine-terminated poly(ethylenoxide). Carbon 44(4), 613–617 (2006a)CrossRefGoogle Scholar
  174. Wang, S., et al.: Effective functionalization of carbon nanotubes for reinforcing epoxy polymer composites. Nanotechnology 17(6), 1551–1557 (2006b)CrossRefGoogle Scholar
  175. Wang, C., et al.: A study on microhardness and tribological behaviour of carbon nanotubes reinforced AMMA-CNTs copolymer nanocomposites. Mater. Sci. Eng. A 478(1–2), 314–318 (2008)Google Scholar
  176. Weisenberger, M.C., et al.: Enhanced mechanical properties of polyacrylonitrile/multiwall carbon nanotube composite fibers. J. Nanosci. Nanotechnol. 3(6), 535–539 (2003)CrossRefGoogle Scholar
  177. Wetzel, B., Rosso, P., Haupert, F., Friedrich, K.: Epoxy nanocomposites—fracture and toughening mechanisms. Eng. Fract. Mech. 73(16), 2375–2398 (2006)CrossRefGoogle Scholar
  178. Witt, N., Tang, Y., Ye, L., Fang, L.: Silicone rubber nanocomposites containing a small amount of hybrid fillers with enhanced electrical sensitivity. Mater. Des. 45, 548–554 (2013)CrossRefGoogle Scholar
  179. Xia, H., Wang, Q., Li, K., Hu, G.H.: Preparation of CNT/polypropylene composite powder with a solid state mechanochemical pulverization process. J. Appl. Polym. Sci. 93(1), 378–386 (2004)CrossRefGoogle Scholar
  180. Xiao, K.Q., Zhang, L.C., Zarudi, I.: Mechanical and rheological properties of CNT–reinforced polyethylene composites. Compos. Sci. Technol. 67(2), 177–182 (2007a)CrossRefGoogle Scholar
  181. Xiao, Y., et al.: Dispersion and mechanical properties of polypropylene/multiwall carbon nanotubes composites obtained via dynamic packing injection molding. J. Appl. Polym. Sci. 104(3), 1880–1886 (2007b)CrossRefGoogle Scholar
  182. Xie, L., et al.: Single-walled carbon nanotubes functionalized with high bonding density of polymer layers and enhanced mechanical properties of composites. Macromolecules 40(9), 3296–3305 (2007)CrossRefGoogle Scholar
  183. Xu, X., Thwe, M.M., Shearwood, C., Liao, K.: Mechanical properties and interfacial characteristics of carbon-nanotube–reinforced epoxy thin films. Appl. Phys. Lett. 81(15), 2833–2835 (2002)CrossRefGoogle Scholar
  184. Yang, B.X., Pramoda, K.P., Xu, G.Q., Goh, S.H.: Mechanical reinforcement of polyethylene using polyethylene-grafted multiwalled carbon nanotubes. Adv. Funct. Mater. 17(13), 2062–2069 (2007)CrossRefGoogle Scholar
  185. Yang, K., et al.: Effects of carbon nanotube functionalisation on the mechanical and thermal properties of epoxy composites. Carbon 47(7), 1723–1737 (2009)CrossRefGoogle Scholar
  186. Zhang, X., et al.: Poly(vinyl alcohol)/SWCNT composite film. Nano Lett. 3(9), 1285–1288 (2003)CrossRefGoogle Scholar
  187. Zhang, X., et al.: Gel spinning of PVA/SWCNT composite fiber. Polymer 45(26), 8801–8807 (2004)CrossRefGoogle Scholar
  188. Zhang, W., Picu, R.C., Koratkar, N.: The effect of carbon nanotube dimensions and dispersion on the fatigue behavior of epoxy nanocomposites. Nanotechnology 19(28), 285709 (2008)CrossRefGoogle Scholar
  189. Zhao, P., et al.: Excellent tensile ductility in highly oriented injection-molded bars of polypropylene/carbon nanotubes composites. Polymer 48(19), 5688–5695 (2007)CrossRefGoogle Scholar
  190. Zhou, Y., Pervin, F., Lewis, L., Jeelani, S.: Fabrication and characterization of carbon/epoxy composites mixed with multi-walled carbon nanotubes. Mater. Sci. Eng. A 475(1–2), 230–237 (2008)Google Scholar
  191. Zou, Y., Feng, Y., Wang, L., Liu, X.: Processing and properties of MWNT/HDPE composites. Carbon 42(2), 271–277 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Griffith School of EngineeringGriffith University (Gold Coast Campus)SouthportAustralia
  2. 2.Protein Research CenterShahid Beheshti University, G.C.TehranIran
  3. 3.Fatigue and Fracture Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical EngineeringIran University of Science and TechnologyTehranIran

Personalised recommendations