Skip to main content

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 39))

Abstract

Carbon nanotubes have attracted significant attention since their discovery, as unique valuable nanostructures, with many outstanding properties, leading them toward being applied in a wide variety of novel and amazing applications. The extraordinary properties of carbon nanotubes stem mostly from their perfect hexagonal structure, as well as their high length to diameter or aspect ratio, which is specific to most of nanostructured materials. In other terms, nanomaterials are all uniquely beneficial in many of today’s emerging applications, only as a result of their high aspect ratio. This specific characteristic make them interact with their surrounding environment more efficiently, especially when it comes to adsorption properties and interaction in a gaseous environment. In this chapter, the structure of carbon nanotubes and the methods of fabricating them will be introduced and the defects associated with their structure will be explained in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmadi, M.T., Webb, J.F., Razali, I., Rahmandoust, M.: Carbon-based materials concepts and basic physics. In: Razali, I., Ahmadi, M.T., Anwar, S. (eds.) Advanced Nanoelectronics, pp. 49–82. CRC Press, Boca Raton (2012)

    Google Scholar 

  • Ajayan, P.M., Ravikumar, V., Charlier, J.-C.: Surface reconstruction and dimensional changes in single-walled carbon nanotubes. Phys. Rev. Lett. 81, 1437–1440 (1998)

    Article  Google Scholar 

  • Azadi, S., Moradian, R., Shafaee, A.M.: The effect of Stone-Wales defect orientations on the electronic properties. Comp. Mater. Sci. 49, 699–703 (2010)

    Article  Google Scholar 

  • Baierle, R.J., et al.: Electronic and structural properties of silicon-doped carbon nanotubes. Phys. Rev. B 64, 085413-1–085413-4 (2001)

    Article  Google Scholar 

  • Berber, S., Kwon, Y.-K., Tomànek, D.: Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84(20), 4613–4616 (2000)

    Article  Google Scholar 

  • Bethune, D.S., et al.: Cobalt–catalysed growth of carbon nanotubes with single–atomic–layer walls. Nature 363, 605–607 (1993)

    Article  Google Scholar 

  • Blase, X., et al.: Boron-mediated growth of long helicity-selected carbon nanotubes. Phys. Rev. Lett. 83, 5078–5081 (1999)

    Article  Google Scholar 

  • Carroll, D.L., et al.: Effects of nanodomain formation on the electronic structure of doped carbon nanotubes. Phys. Rev. Lett. 81, 2332–2335 (1998)

    Article  Google Scholar 

  • Chang, T., Gao, H.: Size-dependent elastic properties of single-walled carbon nanotubes via a molecular mechanics model. J. Mech. Phys. Solids 51, 1059–1074 (2003)

    Article  Google Scholar 

  • Charlier, J.-C.: Defects in carbon nanotubes. Acc. Chem. Res. 35, 1063–1069 (2002)

    Article  Google Scholar 

  • Chico, L., et al.: Pure carbon nanoscale devices: nanotube heterojunctions. Phys. Rev. Lett. 76, 971–974 (1996)

    Article  Google Scholar 

  • Choi, J.H., Ihm, J., Louie, S.G., Cohen, M.L.: Defects, quasibound states, and quantum conductance in metallic carbon nanotubes. Phys. Rev. Lett. 84, 2917–2920 (2000)

    Article  Google Scholar 

  • Collins, P.G.: Defects and disorder in carbon nanotubes. In: Narlikar, A.V., Fu, Y.Y. (eds.) Oxford Handbook of Nanoscience and Technology: Frontiers and Advances. Oxford University Press, Oxford (2009)

    Google Scholar 

  • Cordero, B., et al.: Covalent radii revisited. Dalton Trans. 21, 2832–2838 (2008)

    Article  Google Scholar 

  • Czerw, R., et al.: Identification of electron donor states in N-doped carbon nanotubes. Nano Lett. 1(9), 457–460 (2001)

    Article  Google Scholar 

  • Deck, C.P., Vecchio, K.: Growth mechanism of vapor phase CVD-grown multi-walled carbon nanotubes. Carbon 43(12), 2608–2617 (2005)

    Article  Google Scholar 

  • DeHon, A.: Array-based architecture for molecular electronics. In: First Workshop on Non-Silicon Computation (2002)

    Google Scholar 

  • Dekker, C.: Carbon nanotubes as molecular quantum wires. Phys. Today 52(5), 22–28 (1999)

    Article  Google Scholar 

  • Dresselhaus, M.S., Dresselhaus, G., Saito, R.: Physics of carbon nanotubes. Carbon 33(7), 883–891 (1995)

    Article  Google Scholar 

  • Dresselhaus, M.S., Dresselhaus, G., Charlier, J.C., Hernandez, E.: Electronic, thermal and mechanicalproperties of carbon nanotubes. Phil. Trans. R. Soc. Lond. A 362, 2065–2098 (2004)

    Article  Google Scholar 

  • Dresselhaus, M.S., Dresselhaus, G., Saito, R., Jorio, A.: Raman spectroscopy of carbon nanotubes. Phys. Rep. 409(2), 47–99 (2005)

    Article  Google Scholar 

  • Duan, W.H., Wang, Q., Liew, K.M., He, X.Q.: Molecular mechanics modeling of carbon nanotube fracture. Carbon 45, 1769–1776 (2007)

    Article  Google Scholar 

  • Dürkop, T., Getty, A.S., Cobas, E., Fuhrer, M.S.: Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 4, 35–39 (2004)

    Article  Google Scholar 

  • Ebbesen, T.W., Ajayan, P.M.: Large scale synthesis of carbon nanotubes. Nature 358, 220–222 (1992)

    Article  Google Scholar 

  • Ehrhart, P.: Properties and interactions of atomic defects in metals and alloys. In: Landolt-Börnstein, New Series III, p. 88. Springer-Verlag, Berlin (1991)

    Google Scholar 

  • Fagan, S.B., et al.: Ab initio study of an organic molecule interacting with a silicon-doped carbon nanotube. Diam. Relat. Mater. 12, 861–863 (2003)

    Article  Google Scholar 

  • Fakhrabadi, M.M.S., Rastgoo, A., Ahmadian, M.T.: Pull-in behaviors of carbon nanotubes with vacancy defects and residual stresses. J. Comput. Theor. Nanosci. 11(1), 153–159 (2014)

    Article  Google Scholar 

  • Fan, C.W., Liu, Y.Y., Hwu, C.: Finite element simulation for estimating the mechanical properties of multi-walled carbon nanotubes. Appl. Phys. A 95, 819–831 (2009)

    Article  Google Scholar 

  • Fang, S.C., Chang, W.J., Wang, Y.H.: Computation of chirality- and size-dependent surface Young’s moduli for single-walled carbon nanotubes. Phys. Rev. Lett. A 371, 499–503 (2007)

    Article  Google Scholar 

  • Farsadi, M., Öchsner, A., Rahmandoust, M.: Numerical investigation of composite materials reinforced with waved carbon nanotubes. J. Compos. Mater. 47, 1425–1434 (2013)

    Article  Google Scholar 

  • Fereidoon, A., Rafiee, R., Moghadam, R.M.: A modal analysis of carbon-nanotube-reinforced polymer by using a multiscale finite-element method. Mech. Compos. Mater. 49(3), 325–332 (2013)

    Article  Google Scholar 

  • Formica, G., Lacarbonara, W., Alessi, R.: Vibrations of carbon nanotube-reinforced composites. J. Sound Vibrat. 329, 1875–1889 (2010)

    Article  Google Scholar 

  • Gai, P., et al.: Structural systematics in boron-doped single wall carbon nanotubes. J. Mater. Chem. 14, 669 (2004)

    Article  Google Scholar 

  • Gal’Pern, E.G., Stankevich, I.V., Chistyakov, A.L., Chernozatonskiǐ, L.A.: Atomic and electronic structure of the barrelenes b-Cm with m = 36 + 12n. JETP Lett. 55, 483–486 (1992)

    Google Scholar 

  • Gao, R.P., et al.: Nanomechanics of individual carbon nanotubes from pyrolytically grown arrays. Phys. Rev. Lett. 85, 622–625 (2000)

    Article  Google Scholar 

  • Ge, M., Sattler, K.: Bundles of carbon nanotubes generated by vapor-phase growth. Appl. Phys. Lett. 64(6), 710–711 (1994)

    Article  Google Scholar 

  • Ghadyani, G., Rahmandoust, M.: Computational nanomechanics investigation techniques. In: Silvestre, N. (ed.) Advanced Computational Nanomechanics. Wiley, New York (2015)

    Google Scholar 

  • Ghavamian, A., Öchsner, A.: Numerical investigation on the influence of defects on the buckling behavior of single-and multi-walled carbon nanotubes. Physica E 46, 241–249 (2012)

    Article  Google Scholar 

  • Ghavamian, A., Öchsner, A.: Numerical modeling of eigenmodes and eigenfrequencies of single- and multi-walled carbon nanotubes under the influence of atomic defects. J. Nano Res-SW 21, 158–164 (2013a)

    Google Scholar 

  • Ghavamian, A., Öchsner, A.: Numerical modeling of eigenmodes and eigenfrequencies of single- and multi-walled carbon nanotubes under the influence of atomic defects. Comp. Mater. Sci. 72, 42–48 (2013b)

    Article  Google Scholar 

  • Ghavamian, A., Rahmandoust, M., Öchsner, A.: A numerical evaluation of the influence of defects on the elastic modulus of single and multi-walled carbon nanotubes. Comp. Mater. Sci. 62, 110–116 (2012)

    Article  Google Scholar 

  • Ghavamian, A., Rahmandoust, M., Öchsner, A.: On the determination of the shear modulus of carbon nanotubes. Compos. Part B-Eng. 44, 52–59 (2013)

    Article  Google Scholar 

  • Ghavamian, A., Rahmandoust, M., Öchsner, A.: Perfect and Defective Hetero-Junction CNTs. In: Silvestre, N. (ed.) Advanced Computational Nanomechanics. Wiley, New York (2015) in-press

    Google Scholar 

  • Guo, T., et al.: Catalytic growth of single-walled nanotubes by laser vaporization. Chem. Phys. Lett. 243, 49–54 (1995)

    Article  Google Scholar 

  • Hernández, E., Goze, C., Bernier, P., Rubio, A.: Elastic properties of single-wall nanotubes. Appl. Phys. A 68, 287–292 (1999a)

    Google Scholar 

  • Hernández, E., Goze, C., Bernier, P., Rubio, A.: Elastic properties of C and BxCyNz composite nanotubes. Phys. Rev. Lett. 80, 4502 (1999b)

    Article  Google Scholar 

  • Hosseini, A.A., Allahyari, M., Besheli, S.D.: Synthesis of carbon nanotubes, nano fibbers and nano union by electric arc discharge method using nacl accuse as solution and fe and ni particles as catalysts. Int. J. Sci. Env. Technol. 1(3), 217–229 (2012)

    Google Scholar 

  • Hsu, W., et al.: Boron doping effects in carbon nanotubes. J. Mater. Chem. 10, 1425–1429 (2000)

    Article  Google Scholar 

  • Unidym-Technology: CNT manufacturing. http://www.unidym.com/technology/cnt_manufacture.html (2008)

  • Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  • Iijima, S., Ichihashi, T.: Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603–605 (1993)

    Article  Google Scholar 

  • Jahanshahi, M., Kiadehi, A.D.: Fabrication, purification and characterization of carbon nanotubes: arc-discharge in liquid media (ADLM). In: Suzuki, S. (ed.) Syntheses and Applications of Carbon Nanotubes and Their Composites, pp. 55–76. Croatia, InTech (2013)

    Google Scholar 

  • Javey, A., et al.: Ballistic carbon nanotube transistors. Nature 424, 654–657 (2003)

    Article  Google Scholar 

  • Jin, Y., Yuan, F.G.: Simulation of elastic properties of single–walled carbon nanotubes. Compos. Sci. Technol. 63, 1507–1515 (2003)

    Article  Google Scholar 

  • Jorio, A., Dresselhaus, G., Dresselhaus, M.S.: Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications. Springer, Heidelberg (2008)

    Book  Google Scholar 

  • Journet, C., et al.: Large scale production of single walled carbon nanotubes by the electric arc technique. Nature 388, 756–758 (1997)

    Article  Google Scholar 

  • Kalamkarov, A.L., et al.: Analytical and numerical techniques to predict carbonnanotube properties. Int. J. Solids Struct. 43, 6832–6854 (2006)

    Article  Google Scholar 

  • Kaptay, G., Sytchev, J.: Report. University of Miskolc (2005)

    Google Scholar 

  • Kataura, H. et al.: Optical properties of single-wall carbon nanotubes. In: International Conference on Science and Technology of Synthetic Metals (1999)

    Google Scholar 

  • Kaw, A.K.: Mechanics of composite materials, 2nd edn. CRC Press Taylor and Francis, Boca Raton (2006)

    Google Scholar 

  • Kelly, M.J.: Low-dimensional semiconductors: materials, physics, technology, devices. Oxford University, Oxford (1995)

    Google Scholar 

  • Keskar, G., et al.: Nitrogen doping and characterization of isolated single-wall carbon nanotubes using liquid precursors. Chem. Phys. Lett. 412, 269–273 (2005)

    Article  Google Scholar 

  • Kivistö, S., et al.: Carbon nanotube films for ultrafast broadband technology. Opt. Express 17, 2358–2363 (2009)

    Article  Google Scholar 

  • Kosakovskaya, Z.Y., Chernozatonskii, L.A., Fedorov, E.A.: Nanofilament carbon structure. JETP Lett. 56, 26–29 (1992)

    Google Scholar 

  • Krishnan, A., et al.: Young’s modulus of single-walled nanotubes. Phys. Rev. B 58, 14013–14019 (1998)

    Article  Google Scholar 

  • Li, C., Chou, T.-W.: A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40(10), 2487–2499 (2003)

    Article  Google Scholar 

  • Li, W.Z., et al.: Large scale synthesis of aligned carbon nanotubes. Science 274(5293), 1701–1703 (1996)

    Article  Google Scholar 

  • Liu, J. et al.: Chirality-controlled synthesis of single-wall carbon nanotubes using vapour-phase epitaxy. Nat. Commun. 3, 1199-1-7 (2012)

    Google Scholar 

  • Liu, X. et al.: Detailed analysis of the mean diameter and diameter distribution of single-wall carbon nanotubes from their optical response. Phys. Rev. B 66, 4 (2002)

    Google Scholar 

  • Lu, J.P.: Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett. 79, 1297–1300 (1997)

    Article  Google Scholar 

  • Lu, A.J., Pan, B.C.: Nature of single vacancy in achiral carbon nanotubes. Phys. Rev. Lett. 92, 105504 (2004)

    Article  Google Scholar 

  • Margulis, A.V.: Theoretical estimations of third-order optical nonlinearities for semiconductor carbon nanotubes. J. Phys.: Condens. Matter 11, 3065 (1999)

    Google Scholar 

  • Margulis, A.V., Sizikova, T.A.: Theoretical study of third order nonlinear optical response of semiconductor carbon nanotube. Phys. B 245, 173–189 (1998)

    Article  Google Scholar 

  • Martinez, A., Yamashita, S.: Carbon nanotube-based photonic devices: applications in nonlinear optics. In: Marulanda, J.M. (ed.) Carbon Nanotubes Applications on Electron Devices. Croatia, InTech (2011)

    Google Scholar 

  • McEuen, P.L.: Nanotechnology: carbon-based electronics. Nature 393, 15–17 (1998)

    Article  Google Scholar 

  • McGuire, K., et al.: Synthesis and Raman characterization of boron-doped single-walled carbon nanotubes. Carbon 43, 219–227 (2005)

    Article  Google Scholar 

  • Moghadam, R.M., Hosseini, S.A., Salehi, M.: The influence of Stone–Thrower–Wales defect on vibrational characteristics of single-walled carbon nanotubes incorporating Timoshenko beam element. Physica E 62, 80–89 (2014)

    Article  Google Scholar 

  • Nardelli, M.B., Yakobson, B.I., Bernholc, J.: Brittle and ductile behavior in carbon nanotubes. Phys. Rev. Lett. 81, 4656–4659 (1998)

    Article  Google Scholar 

  • NASA: NASA’s Goddard Space Flight Center Report. National Aeronautics and Space Administration (NASA) (2005)

    Google Scholar 

  • Natsuki, T., Tantrakarn, K., Endo, M.: Prediction of elastic properties for single–walled carbon nanotubes. Carbon 42, 39–45 (2004)

    Article  Google Scholar 

  • Nikolaev, P., et al.: Gas phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 313, 91–97 (1999)

    Article  Google Scholar 

  • Ponomareva, I., Chernozatonskii, L.A., Andriotis, A.N., Menon, M.: Formation pathways for single-wall carbon nanotube multiterminal junctions. New J. Phys. 5, 119.1–12 (2003)

    Google Scholar 

  • Pop, E., et al.: Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6(1), 96–100 (2006)

    Article  Google Scholar 

  • Pozrikidis, C.: Effect of the Stone-Wales defect on the structure and mechanical properties of single-wall carbon nanotubes in axial stretch and twist. Arch. Appl. Mech. 79, 113–123 (2009)

    Article  Google Scholar 

  • Pullen, A., Zhao, G.L., Bagayoko, D., Yang, L.: Structural, elastic, and electronic properties of deformed carbon nanotubes under uniaxial strain. Phys. Rev. B 71, 205410–205415 (2005)

    Article  Google Scholar 

  • Rafique, M.M.A., Iqbal, J.: Production of carbon nanotubes by different routes—a review. J. Encapsul. Adsorpt. Sci. 1, 29–34 (2011)

    Article  Google Scholar 

  • Rahmandoust, M., Öchsner, A.: Young’s modulus variation of carbon nanotubes due to defects associated with atomic reconstruction of random vacancies. J. Comput. Theor. Nanosci. 12, (2015) in press

    Google Scholar 

  • Rahmandoust, M., Öchsner, A.: Influence of structural imperfections and doping on the mechanical properties of single-walled carbon nanotubes. J. Nano Res-SW 6, 185–196 (2009)

    Article  Google Scholar 

  • Rahmandoust, M., Öchsner, A.: Buckling behaviour and natural frequency of zigzag and armchair single-walled carbon nanotubes. J. Nano Res-SW 16, 153–160 (2012a)

    Article  Google Scholar 

  • Rahmandoust, M., Öchsner, A.: On finite element modeling of single and multi-walled carbon nanotubes. J. Nanosci. Nanotechnol. 12, 8129–8136 (2012b)

    Article  Google Scholar 

  • Ray, M.C., Kundalwal, S.I.: Effect of carbon nanotube waviness on the load transfer characteristics of short fuzzy fiber-reinforced composite. J. Nanomech. Micromech. 4, A4013010 (2013)

    Article  Google Scholar 

  • Reich, S., Thomsen, C., Maultzsch, J.: Carbon Nanotubes: Basic Concepts and Physical Properties. Wiley-VCH, Weinheim (2004)

    Google Scholar 

  • Resasco, D.E., et al.: A scalable process for production of single-walled carbon nanotubes (SWNTS) by catalytic disproportionation of Co on a solid catalyst. J. Nanopart. Res. 4, 131–136 (2002)

    Article  Google Scholar 

  • Ruoff, R.S., Lorents, D.C.: Mechanical and thermal properties of carbon nanotubes. Carbon 33(7), 925–930 (1995)

    Article  Google Scholar 

  • Saito, R., Fujita, M., Dresselhaus, G., Dresselhaus, M.S.: Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 60, 2204–2206 (1992)

    Article  Google Scholar 

  • Saito, R., Dresselhaus, M.S., Dresselhaus, G.: Tunneling conductance of connected carbon nanotubes. Phys. Rev. B 53, 2044–2049 (1996)

    Article  Google Scholar 

  • Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Physical Properties of Carbon Nanotubes. Imperial College Press, London (1998)

    Book  Google Scholar 

  • Samsonidze, G.G., et al.: Family behavior of the optical transition energies in single-wall carbon nanotubes of smaller diameters. Appl. Phys. Lett. 85(23), 5703–5705 (2004)

    Article  Google Scholar 

  • Sánchez-Portal, D., et al.: Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Phys. Rev. B 59, 12678–12688 (1999)

    Article  Google Scholar 

  • Santos, H.D.L.: Introduction to microelectromechanical microwave systems. Artech House Publishers, London (1999)

    Google Scholar 

  • Scarselli, M., Castrucci, P., Crescenzi, M.D.: Electronic and optoelectronic nano-devices based on carbon nanotubes. J. Phys. 24, 313202-1-36 (2012)

    Google Scholar 

  • Sen, R., et al.: Nitrogen-containing carbon nanotubes. J. Mater. Chem. 7, 2335–2337 (1997)

    Article  Google Scholar 

  • Sie, C.T.: Carbon nanotube reinforced composites: metal and ceramic matrices. Wiley–VCH, Weinheim (2009)

    Google Scholar 

  • Sinha, S., et al.: Off-axis thermal properties of carbon nanotube films. J. Nanopart. Res. 7(6), 651–657 (2005)

    Article  Google Scholar 

  • Song, H.Y., Sun, H.M., Zhang, G.X.: Molecular dynamic study of effects of Si-doping upon structure and mechanical properties of carbon nanotubes. Commun. Theor. Phys. 45, 741–744 (2006)

    Article  Google Scholar 

  • Song, X., Ge, Q., Yen, S.-C.: A first-principles study on the elastic properties of single-walled carbon nanotubes. J. Nanoeng. Nanosys. 223, 163–168 (2010)

    Google Scholar 

  • Stone, A.J., Wales, D.J.: Theoretical studies of icosahedral C60 and some related structures. Chem. Phys. Lett. 128, 501–503 (1986)

    Article  Google Scholar 

  • Tanaka, K., et al.: Interlayer interaction of two graphene sheets as a model of double-layer carbon nanotubes. Carbon 35, 121–125 (1997)

    Article  Google Scholar 

  • Tang, Z.K., et al.: Superconductivity in 4 angstrom single-walled carbon nanotubes. Science 292(5526), 2462–2465 (2001)

    Article  Google Scholar 

  • Tans, S.J., Verschueren, M., Dekker, C.: Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–51 (1998)

    Article  Google Scholar 

  • Terrones, M. et al.: Molecular junctions by joining single-walled carbon nanotubes. Phys. Rev. Lett. 89(7), 075505-1-4 (2002)

    Google Scholar 

  • Terrones, M., et al.: Carbon nitride nanocomposites: formation of aligned CxNy nanofibers. Adv. Mater. 11(8), 655–658 (1999)

    Article  Google Scholar 

  • Terrones, M., Filho, A.G.S., Rao, A.M.: Doped carbon nanotubes: synthesis, characterization and applications. In: Jorio, A., Dresselhaus, G., Dresselhaus, M.S. (eds.) Carbon Nanotubes, Topics in Applied Physics, vol. 111, pp. 531–566. Springer, Berlin (2008)

    Google Scholar 

  • Terrones, H., Lv, R., Terrones, M., Dresselhaus, M.S.: The role of defects and doping in 2D graphene sheets and 1D nanoribbons. Rep. Prog. Phys. 75, 062501-1–06250130 (2012)

    Article  Google Scholar 

  • Thess, A., et al.: Crystalline ropes of metallic carbon nanotubes. Science 273, 483–487 (1996)

    Article  Google Scholar 

  • Tian, Y.: Optical properties of single-walled carbon nanotubes and nanobuds. Doctoral Dissertations. Aalto University publication, Aalto University, Finland (2012)

    Google Scholar 

  • Tian, Y., et al.: Analysis of the size distribution of single-walled carbon nanotubes using optical absorption spectroscopy. J. Phys. Chem. Lett. 1(7), 1143–1148 (2010)

    Article  Google Scholar 

  • Tirupathi, R.C., Ashok, D.B.: Introduction to finite elements in engineering, 2nd edn. Prentice-Hall, New Jersey (1997)

    Google Scholar 

  • To, C.W.S.: Bending and shear moduli of single–walled carbon nanotubes. Finite Elem. Anal. Des. 42(5), 404–413 (2006)

    Article  Google Scholar 

  • Tombler, T.W., et al.: Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 405, 769–772 (2000)

    Article  Google Scholar 

  • Tserpes, K.I., Papanikos, P.: Finite element modeling of single-walled carbon nanotubes. Compos. Part B-Eng. 36(5), 468–477 (2005)

    Article  Google Scholar 

  • Villalpando-Páez, F., et al.: Synthesis and characterization of long strands of nitrogen-doped single-walled carbon nanotubes. Chem. Phys. Lett. 424, 345–352 (2006)

    Article  Google Scholar 

  • Vouris, P.A.: Molecular electronics with carbon nanotubes. Acc. Chem. Res. 35, 1026–1034 (2002)

    Article  Google Scholar 

  • Wal, V., Randall, L., Ticich, T.M.: Flame and furnace synthesis of single-walled and multi-walled carbon nanotubes and nanofibers. J. Phys. Chem. B 105, 10249–10256 (2001)

    Google Scholar 

  • Wang, S.-D., et al.: Synthesis of carbon nanotubes by arc discharge in sodium chloride solution. Carbon 43, 1778–1814 (2005)

    Article  Google Scholar 

  • Wang, C.M., Zhang, Y.Y., Xiang, Y., Reddy, J.N.: Recent studies on buckling of carbon nanotubes. Appl. Mech. Rev. 63, 030804-1-18 (2010)

    Google Scholar 

  • Wei, C.: Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites. Nano Lett. 2(6), 647–650 (2002)

    Article  Google Scholar 

  • Wei, B.Q., Vajtai, R., Ajayan, P.M.: Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 79, 1172–1174 (2001)

    Article  Google Scholar 

  • Wei, D.C., et al.: Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9(5), 1752 (2009)

    Article  Google Scholar 

  • Wei, L., Yanhui, F., Jia, P., Xinxin, Z.: Effects of stone-wales defects on the thermal conductivity of carbon nanotubes. J. Heat Trans. 134, 092401-1-5 (2012)

    Google Scholar 

  • WenXing, B., ChangChun, Z., WanZhao, C.: Simulation of Young’s modulus of single-walled carbon nanotubes by molecular dynamics. Phys. B 352, 156–163 (2004)

    Article  Google Scholar 

  • Wilson, M., et al.: Nanotechnology: Basic Science and Emerging Technologies. Chapman and Hall/CRC, Boca Ratón (2002)

    Book  Google Scholar 

  • Wu, Y., Zhang, X., Leung, A.Y.T., Zhong, W.: An energy–equivalent model on studying the mechanical properties of single–walled carbon nanotubes. Thin wall struct. 44, 667–676 (2006)

    Article  Google Scholar 

  • Xiao, J.R., Staniszewski, J., Jr., J.W.G.: Tensile behaviors of graphene sheets and carbon nanotubes with multiple Stone–Wales defects. Mater. Sci. Eng. A 527, 715–723 (2010)

    Google Scholar 

  • Yamashita, A.M.A.S.: Carbon nanotube-based photonic devices: applications in nonlinear optics. In: Marulanda, J.M. (ed.) Carbon Nanotubes Applications on Electron Devices, pp. 367–386. InTech, Croatia (2011)

    Google Scholar 

  • Yao, Z., Postma, H.W.C., Balents, L., Dekker, C.: Carbon nanotube intramolecular junctions. Nature 402(6759), 273–276 (1999)

    Article  Google Scholar 

  • Yengejeh, S.I., AkbarZadeh, M., Öchsner, A.: On the buckling behavior of connected carbon nanotubes. Appl. Phys. A. 1–10. http://link.springer.com/article/10.1007/s00339-013-7999-2 (2014)

  • Yengejeh, S.I., AkbarZadeh, M., Öchsner, A.: Numerical charaterization of the shear behavior of hetero-junction carbon nanotubes. J. Nano Res-SW 26, 143–151 (2013)

    Article  Google Scholar 

  • Yengejeh, S.I., Delgado, J.M.P.Q., Lima, A.G.B.d. & Öchsner, A., 2014. Numerical Simulation of the Vibration Behavior of Curved Carbon Nanotubes. Adv. Mater. Sci. Eng., 2014, pp.815340-1-9

    Google Scholar 

  • Yu, W., Xi, W.X., Xianggui, N.: Atomistic simulation of the torsion deformation of carbon nanotubes. Model. Simul. Mater. Sci. Eng. 12, 1099–1107 (2004)

    Article  Google Scholar 

  • Zhou, Z.-J., et al.: Theoretical investigation on nonlinear optical properties of carbon nanotubes with Stone-Wales defect rings. J. Mater. Chem. C 2, 306–311 (2014)

    Article  Google Scholar 

  • Ziaee, S.: Torsional buckling of single-walled carbon nanotubes with multi-vacancy defects. J. Comput. Theor. Nanosci. 10(11), 2586–2590 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moones Rahmandoust .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rahmandoust, M., Ayatollahi, M.R. (2016). Carbon Nanotubes. In: Characterization of Carbon Nanotube Based Composites under Consideration of Defects. Advanced Structured Materials, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-319-00251-4_2

Download citation

Publish with us

Policies and ethics