Carbon Nanotubes

  • Moones RahmandoustEmail author
  • Majid R. Ayatollahi
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 39)


Carbon nanotubes have attracted significant attention since their discovery, as unique valuable nanostructures, with many outstanding properties, leading them toward being applied in a wide variety of novel and amazing applications. The extraordinary properties of carbon nanotubes stem mostly from their perfect hexagonal structure, as well as their high length to diameter or aspect ratio, which is specific to most of nanostructured materials. In other terms, nanomaterials are all uniquely beneficial in many of today’s emerging applications, only as a result of their high aspect ratio. This specific characteristic make them interact with their surrounding environment more efficiently, especially when it comes to adsorption properties and interaction in a gaseous environment. In this chapter, the structure of carbon nanotubes and the methods of fabricating them will be introduced and the defects associated with their structure will be explained in detail.


Carbon Nanotubes Shear Modulus Beam Element Wales Defect Saturable Absorber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahmadi, M.T., Webb, J.F., Razali, I., Rahmandoust, M.: Carbon-based materials concepts and basic physics. In: Razali, I., Ahmadi, M.T., Anwar, S. (eds.) Advanced Nanoelectronics, pp. 49–82. CRC Press, Boca Raton (2012)Google Scholar
  2. Ajayan, P.M., Ravikumar, V., Charlier, J.-C.: Surface reconstruction and dimensional changes in single-walled carbon nanotubes. Phys. Rev. Lett. 81, 1437–1440 (1998)CrossRefGoogle Scholar
  3. Azadi, S., Moradian, R., Shafaee, A.M.: The effect of Stone-Wales defect orientations on the electronic properties. Comp. Mater. Sci. 49, 699–703 (2010)CrossRefGoogle Scholar
  4. Baierle, R.J., et al.: Electronic and structural properties of silicon-doped carbon nanotubes. Phys. Rev. B 64, 085413-1–085413-4 (2001)CrossRefGoogle Scholar
  5. Berber, S., Kwon, Y.-K., Tomànek, D.: Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84(20), 4613–4616 (2000)CrossRefGoogle Scholar
  6. Bethune, D.S., et al.: Cobalt–catalysed growth of carbon nanotubes with single–atomic–layer walls. Nature 363, 605–607 (1993)CrossRefGoogle Scholar
  7. Blase, X., et al.: Boron-mediated growth of long helicity-selected carbon nanotubes. Phys. Rev. Lett. 83, 5078–5081 (1999)CrossRefGoogle Scholar
  8. Carroll, D.L., et al.: Effects of nanodomain formation on the electronic structure of doped carbon nanotubes. Phys. Rev. Lett. 81, 2332–2335 (1998)CrossRefGoogle Scholar
  9. Chang, T., Gao, H.: Size-dependent elastic properties of single-walled carbon nanotubes via a molecular mechanics model. J. Mech. Phys. Solids 51, 1059–1074 (2003)CrossRefGoogle Scholar
  10. Charlier, J.-C.: Defects in carbon nanotubes. Acc. Chem. Res. 35, 1063–1069 (2002)CrossRefGoogle Scholar
  11. Chico, L., et al.: Pure carbon nanoscale devices: nanotube heterojunctions. Phys. Rev. Lett. 76, 971–974 (1996)CrossRefGoogle Scholar
  12. Choi, J.H., Ihm, J., Louie, S.G., Cohen, M.L.: Defects, quasibound states, and quantum conductance in metallic carbon nanotubes. Phys. Rev. Lett. 84, 2917–2920 (2000)CrossRefGoogle Scholar
  13. Collins, P.G.: Defects and disorder in carbon nanotubes. In: Narlikar, A.V., Fu, Y.Y. (eds.) Oxford Handbook of Nanoscience and Technology: Frontiers and Advances. Oxford University Press, Oxford (2009)Google Scholar
  14. Cordero, B., et al.: Covalent radii revisited. Dalton Trans. 21, 2832–2838 (2008)CrossRefGoogle Scholar
  15. Czerw, R., et al.: Identification of electron donor states in N-doped carbon nanotubes. Nano Lett. 1(9), 457–460 (2001)CrossRefGoogle Scholar
  16. Deck, C.P., Vecchio, K.: Growth mechanism of vapor phase CVD-grown multi-walled carbon nanotubes. Carbon 43(12), 2608–2617 (2005)CrossRefGoogle Scholar
  17. DeHon, A.: Array-based architecture for molecular electronics. In: First Workshop on Non-Silicon Computation (2002)Google Scholar
  18. Dekker, C.: Carbon nanotubes as molecular quantum wires. Phys. Today 52(5), 22–28 (1999)CrossRefGoogle Scholar
  19. Dresselhaus, M.S., Dresselhaus, G., Saito, R.: Physics of carbon nanotubes. Carbon 33(7), 883–891 (1995)CrossRefGoogle Scholar
  20. Dresselhaus, M.S., Dresselhaus, G., Charlier, J.C., Hernandez, E.: Electronic, thermal and mechanicalproperties of carbon nanotubes. Phil. Trans. R. Soc. Lond. A 362, 2065–2098 (2004)CrossRefGoogle Scholar
  21. Dresselhaus, M.S., Dresselhaus, G., Saito, R., Jorio, A.: Raman spectroscopy of carbon nanotubes. Phys. Rep. 409(2), 47–99 (2005)CrossRefGoogle Scholar
  22. Duan, W.H., Wang, Q., Liew, K.M., He, X.Q.: Molecular mechanics modeling of carbon nanotube fracture. Carbon 45, 1769–1776 (2007)CrossRefGoogle Scholar
  23. Dürkop, T., Getty, A.S., Cobas, E., Fuhrer, M.S.: Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 4, 35–39 (2004)CrossRefGoogle Scholar
  24. Ebbesen, T.W., Ajayan, P.M.: Large scale synthesis of carbon nanotubes. Nature 358, 220–222 (1992)CrossRefGoogle Scholar
  25. Ehrhart, P.: Properties and interactions of atomic defects in metals and alloys. In: Landolt-Börnstein, New Series III, p. 88. Springer-Verlag, Berlin (1991)Google Scholar
  26. Fagan, S.B., et al.: Ab initio study of an organic molecule interacting with a silicon-doped carbon nanotube. Diam. Relat. Mater. 12, 861–863 (2003)CrossRefGoogle Scholar
  27. Fakhrabadi, M.M.S., Rastgoo, A., Ahmadian, M.T.: Pull-in behaviors of carbon nanotubes with vacancy defects and residual stresses. J. Comput. Theor. Nanosci. 11(1), 153–159 (2014)CrossRefGoogle Scholar
  28. Fan, C.W., Liu, Y.Y., Hwu, C.: Finite element simulation for estimating the mechanical properties of multi-walled carbon nanotubes. Appl. Phys. A 95, 819–831 (2009)CrossRefGoogle Scholar
  29. Fang, S.C., Chang, W.J., Wang, Y.H.: Computation of chirality- and size-dependent surface Young’s moduli for single-walled carbon nanotubes. Phys. Rev. Lett. A 371, 499–503 (2007)CrossRefGoogle Scholar
  30. Farsadi, M., Öchsner, A., Rahmandoust, M.: Numerical investigation of composite materials reinforced with waved carbon nanotubes. J. Compos. Mater. 47, 1425–1434 (2013)CrossRefGoogle Scholar
  31. Fereidoon, A., Rafiee, R., Moghadam, R.M.: A modal analysis of carbon-nanotube-reinforced polymer by using a multiscale finite-element method. Mech. Compos. Mater. 49(3), 325–332 (2013)CrossRefGoogle Scholar
  32. Formica, G., Lacarbonara, W., Alessi, R.: Vibrations of carbon nanotube-reinforced composites. J. Sound Vibrat. 329, 1875–1889 (2010)CrossRefGoogle Scholar
  33. Gai, P., et al.: Structural systematics in boron-doped single wall carbon nanotubes. J. Mater. Chem. 14, 669 (2004)CrossRefGoogle Scholar
  34. Gal’Pern, E.G., Stankevich, I.V., Chistyakov, A.L., Chernozatonskiǐ, L.A.: Atomic and electronic structure of the barrelenes b-Cm with m = 36 + 12n. JETP Lett. 55, 483–486 (1992)Google Scholar
  35. Gao, R.P., et al.: Nanomechanics of individual carbon nanotubes from pyrolytically grown arrays. Phys. Rev. Lett. 85, 622–625 (2000)CrossRefGoogle Scholar
  36. Ge, M., Sattler, K.: Bundles of carbon nanotubes generated by vapor-phase growth. Appl. Phys. Lett. 64(6), 710–711 (1994)CrossRefGoogle Scholar
  37. Ghadyani, G., Rahmandoust, M.: Computational nanomechanics investigation techniques. In: Silvestre, N. (ed.) Advanced Computational Nanomechanics. Wiley, New York (2015)Google Scholar
  38. Ghavamian, A., Öchsner, A.: Numerical investigation on the influence of defects on the buckling behavior of single-and multi-walled carbon nanotubes. Physica E 46, 241–249 (2012)CrossRefGoogle Scholar
  39. Ghavamian, A., Öchsner, A.: Numerical modeling of eigenmodes and eigenfrequencies of single- and multi-walled carbon nanotubes under the influence of atomic defects. J. Nano Res-SW 21, 158–164 (2013a)Google Scholar
  40. Ghavamian, A., Öchsner, A.: Numerical modeling of eigenmodes and eigenfrequencies of single- and multi-walled carbon nanotubes under the influence of atomic defects. Comp. Mater. Sci. 72, 42–48 (2013b)CrossRefGoogle Scholar
  41. Ghavamian, A., Rahmandoust, M., Öchsner, A.: A numerical evaluation of the influence of defects on the elastic modulus of single and multi-walled carbon nanotubes. Comp. Mater. Sci. 62, 110–116 (2012)CrossRefGoogle Scholar
  42. Ghavamian, A., Rahmandoust, M., Öchsner, A.: On the determination of the shear modulus of carbon nanotubes. Compos. Part B-Eng. 44, 52–59 (2013)CrossRefGoogle Scholar
  43. Ghavamian, A., Rahmandoust, M., Öchsner, A.: Perfect and Defective Hetero-Junction CNTs. In: Silvestre, N. (ed.) Advanced Computational Nanomechanics. Wiley, New York (2015) in-pressGoogle Scholar
  44. Guo, T., et al.: Catalytic growth of single-walled nanotubes by laser vaporization. Chem. Phys. Lett. 243, 49–54 (1995)CrossRefGoogle Scholar
  45. Hernández, E., Goze, C., Bernier, P., Rubio, A.: Elastic properties of single-wall nanotubes. Appl. Phys. A 68, 287–292 (1999a)Google Scholar
  46. Hernández, E., Goze, C., Bernier, P., Rubio, A.: Elastic properties of C and BxCyNz composite nanotubes. Phys. Rev. Lett. 80, 4502 (1999b)CrossRefGoogle Scholar
  47. Hosseini, A.A., Allahyari, M., Besheli, S.D.: Synthesis of carbon nanotubes, nano fibbers and nano union by electric arc discharge method using nacl accuse as solution and fe and ni particles as catalysts. Int. J. Sci. Env. Technol. 1(3), 217–229 (2012)Google Scholar
  48. Hsu, W., et al.: Boron doping effects in carbon nanotubes. J. Mater. Chem. 10, 1425–1429 (2000)CrossRefGoogle Scholar
  49. Unidym-Technology: CNT manufacturing. (2008)
  50. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)CrossRefGoogle Scholar
  51. Iijima, S., Ichihashi, T.: Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603–605 (1993)CrossRefGoogle Scholar
  52. Jahanshahi, M., Kiadehi, A.D.: Fabrication, purification and characterization of carbon nanotubes: arc-discharge in liquid media (ADLM). In: Suzuki, S. (ed.) Syntheses and Applications of Carbon Nanotubes and Their Composites, pp. 55–76. Croatia, InTech (2013)Google Scholar
  53. Javey, A., et al.: Ballistic carbon nanotube transistors. Nature 424, 654–657 (2003)CrossRefGoogle Scholar
  54. Jin, Y., Yuan, F.G.: Simulation of elastic properties of single–walled carbon nanotubes. Compos. Sci. Technol. 63, 1507–1515 (2003)CrossRefGoogle Scholar
  55. Jorio, A., Dresselhaus, G., Dresselhaus, M.S.: Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  56. Journet, C., et al.: Large scale production of single walled carbon nanotubes by the electric arc technique. Nature 388, 756–758 (1997)CrossRefGoogle Scholar
  57. Kalamkarov, A.L., et al.: Analytical and numerical techniques to predict carbonnanotube properties. Int. J. Solids Struct. 43, 6832–6854 (2006)CrossRefGoogle Scholar
  58. Kaptay, G., Sytchev, J.: Report. University of Miskolc (2005)Google Scholar
  59. Kataura, H. et al.: Optical properties of single-wall carbon nanotubes. In: International Conference on Science and Technology of Synthetic Metals (1999)Google Scholar
  60. Kaw, A.K.: Mechanics of composite materials, 2nd edn. CRC Press Taylor and Francis, Boca Raton (2006)Google Scholar
  61. Kelly, M.J.: Low-dimensional semiconductors: materials, physics, technology, devices. Oxford University, Oxford (1995)Google Scholar
  62. Keskar, G., et al.: Nitrogen doping and characterization of isolated single-wall carbon nanotubes using liquid precursors. Chem. Phys. Lett. 412, 269–273 (2005)CrossRefGoogle Scholar
  63. Kivistö, S., et al.: Carbon nanotube films for ultrafast broadband technology. Opt. Express 17, 2358–2363 (2009)CrossRefGoogle Scholar
  64. Kosakovskaya, Z.Y., Chernozatonskii, L.A., Fedorov, E.A.: Nanofilament carbon structure. JETP Lett. 56, 26–29 (1992)Google Scholar
  65. Krishnan, A., et al.: Young’s modulus of single-walled nanotubes. Phys. Rev. B 58, 14013–14019 (1998)CrossRefGoogle Scholar
  66. Li, C., Chou, T.-W.: A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40(10), 2487–2499 (2003)CrossRefGoogle Scholar
  67. Li, W.Z., et al.: Large scale synthesis of aligned carbon nanotubes. Science 274(5293), 1701–1703 (1996)CrossRefGoogle Scholar
  68. Liu, J. et al.: Chirality-controlled synthesis of single-wall carbon nanotubes using vapour-phase epitaxy. Nat. Commun. 3, 1199-1-7 (2012)Google Scholar
  69. Liu, X. et al.: Detailed analysis of the mean diameter and diameter distribution of single-wall carbon nanotubes from their optical response. Phys. Rev. B 66, 4 (2002)Google Scholar
  70. Lu, J.P.: Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett. 79, 1297–1300 (1997)CrossRefGoogle Scholar
  71. Lu, A.J., Pan, B.C.: Nature of single vacancy in achiral carbon nanotubes. Phys. Rev. Lett. 92, 105504 (2004)CrossRefGoogle Scholar
  72. Margulis, A.V.: Theoretical estimations of third-order optical nonlinearities for semiconductor carbon nanotubes. J. Phys.: Condens. Matter 11, 3065 (1999)Google Scholar
  73. Margulis, A.V., Sizikova, T.A.: Theoretical study of third order nonlinear optical response of semiconductor carbon nanotube. Phys. B 245, 173–189 (1998)CrossRefGoogle Scholar
  74. Martinez, A., Yamashita, S.: Carbon nanotube-based photonic devices: applications in nonlinear optics. In: Marulanda, J.M. (ed.) Carbon Nanotubes Applications on Electron Devices. Croatia, InTech (2011)Google Scholar
  75. McEuen, P.L.: Nanotechnology: carbon-based electronics. Nature 393, 15–17 (1998)CrossRefGoogle Scholar
  76. McGuire, K., et al.: Synthesis and Raman characterization of boron-doped single-walled carbon nanotubes. Carbon 43, 219–227 (2005)CrossRefGoogle Scholar
  77. Moghadam, R.M., Hosseini, S.A., Salehi, M.: The influence of Stone–Thrower–Wales defect on vibrational characteristics of single-walled carbon nanotubes incorporating Timoshenko beam element. Physica E 62, 80–89 (2014)CrossRefGoogle Scholar
  78. Nardelli, M.B., Yakobson, B.I., Bernholc, J.: Brittle and ductile behavior in carbon nanotubes. Phys. Rev. Lett. 81, 4656–4659 (1998)CrossRefGoogle Scholar
  79. NASA: NASA’s Goddard Space Flight Center Report. National Aeronautics and Space Administration (NASA) (2005)Google Scholar
  80. Natsuki, T., Tantrakarn, K., Endo, M.: Prediction of elastic properties for single–walled carbon nanotubes. Carbon 42, 39–45 (2004)CrossRefGoogle Scholar
  81. Nikolaev, P., et al.: Gas phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 313, 91–97 (1999)CrossRefGoogle Scholar
  82. Ponomareva, I., Chernozatonskii, L.A., Andriotis, A.N., Menon, M.: Formation pathways for single-wall carbon nanotube multiterminal junctions. New J. Phys. 5, 119.1–12 (2003)Google Scholar
  83. Pop, E., et al.: Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6(1), 96–100 (2006)CrossRefGoogle Scholar
  84. Pozrikidis, C.: Effect of the Stone-Wales defect on the structure and mechanical properties of single-wall carbon nanotubes in axial stretch and twist. Arch. Appl. Mech. 79, 113–123 (2009)CrossRefGoogle Scholar
  85. Pullen, A., Zhao, G.L., Bagayoko, D., Yang, L.: Structural, elastic, and electronic properties of deformed carbon nanotubes under uniaxial strain. Phys. Rev. B 71, 205410–205415 (2005)CrossRefGoogle Scholar
  86. Rafique, M.M.A., Iqbal, J.: Production of carbon nanotubes by different routes—a review. J. Encapsul. Adsorpt. Sci. 1, 29–34 (2011)CrossRefGoogle Scholar
  87. Rahmandoust, M., Öchsner, A.: Young’s modulus variation of carbon nanotubes due to defects associated with atomic reconstruction of random vacancies. J. Comput. Theor. Nanosci. 12, (2015) in pressGoogle Scholar
  88. Rahmandoust, M., Öchsner, A.: Influence of structural imperfections and doping on the mechanical properties of single-walled carbon nanotubes. J. Nano Res-SW 6, 185–196 (2009)CrossRefGoogle Scholar
  89. Rahmandoust, M., Öchsner, A.: Buckling behaviour and natural frequency of zigzag and armchair single-walled carbon nanotubes. J. Nano Res-SW 16, 153–160 (2012a)CrossRefGoogle Scholar
  90. Rahmandoust, M., Öchsner, A.: On finite element modeling of single and multi-walled carbon nanotubes. J. Nanosci. Nanotechnol. 12, 8129–8136 (2012b)CrossRefGoogle Scholar
  91. Ray, M.C., Kundalwal, S.I.: Effect of carbon nanotube waviness on the load transfer characteristics of short fuzzy fiber-reinforced composite. J. Nanomech. Micromech. 4, A4013010 (2013)CrossRefGoogle Scholar
  92. Reich, S., Thomsen, C., Maultzsch, J.: Carbon Nanotubes: Basic Concepts and Physical Properties. Wiley-VCH, Weinheim (2004)Google Scholar
  93. Resasco, D.E., et al.: A scalable process for production of single-walled carbon nanotubes (SWNTS) by catalytic disproportionation of Co on a solid catalyst. J. Nanopart. Res. 4, 131–136 (2002)CrossRefGoogle Scholar
  94. Ruoff, R.S., Lorents, D.C.: Mechanical and thermal properties of carbon nanotubes. Carbon 33(7), 925–930 (1995)CrossRefGoogle Scholar
  95. Saito, R., Fujita, M., Dresselhaus, G., Dresselhaus, M.S.: Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 60, 2204–2206 (1992)CrossRefGoogle Scholar
  96. Saito, R., Dresselhaus, M.S., Dresselhaus, G.: Tunneling conductance of connected carbon nanotubes. Phys. Rev. B 53, 2044–2049 (1996)CrossRefGoogle Scholar
  97. Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Physical Properties of Carbon Nanotubes. Imperial College Press, London (1998)CrossRefGoogle Scholar
  98. Samsonidze, G.G., et al.: Family behavior of the optical transition energies in single-wall carbon nanotubes of smaller diameters. Appl. Phys. Lett. 85(23), 5703–5705 (2004)CrossRefGoogle Scholar
  99. Sánchez-Portal, D., et al.: Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Phys. Rev. B 59, 12678–12688 (1999)CrossRefGoogle Scholar
  100. Santos, H.D.L.: Introduction to microelectromechanical microwave systems. Artech House Publishers, London (1999)Google Scholar
  101. Scarselli, M., Castrucci, P., Crescenzi, M.D.: Electronic and optoelectronic nano-devices based on carbon nanotubes. J. Phys. 24, 313202-1-36 (2012)Google Scholar
  102. Sen, R., et al.: Nitrogen-containing carbon nanotubes. J. Mater. Chem. 7, 2335–2337 (1997)CrossRefGoogle Scholar
  103. Sie, C.T.: Carbon nanotube reinforced composites: metal and ceramic matrices. Wiley–VCH, Weinheim (2009)Google Scholar
  104. Sinha, S., et al.: Off-axis thermal properties of carbon nanotube films. J. Nanopart. Res. 7(6), 651–657 (2005)CrossRefGoogle Scholar
  105. Song, H.Y., Sun, H.M., Zhang, G.X.: Molecular dynamic study of effects of Si-doping upon structure and mechanical properties of carbon nanotubes. Commun. Theor. Phys. 45, 741–744 (2006)CrossRefGoogle Scholar
  106. Song, X., Ge, Q., Yen, S.-C.: A first-principles study on the elastic properties of single-walled carbon nanotubes. J. Nanoeng. Nanosys. 223, 163–168 (2010)Google Scholar
  107. Stone, A.J., Wales, D.J.: Theoretical studies of icosahedral C60 and some related structures. Chem. Phys. Lett. 128, 501–503 (1986)CrossRefGoogle Scholar
  108. Tanaka, K., et al.: Interlayer interaction of two graphene sheets as a model of double-layer carbon nanotubes. Carbon 35, 121–125 (1997)CrossRefGoogle Scholar
  109. Tang, Z.K., et al.: Superconductivity in 4 angstrom single-walled carbon nanotubes. Science 292(5526), 2462–2465 (2001)CrossRefGoogle Scholar
  110. Tans, S.J., Verschueren, M., Dekker, C.: Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–51 (1998)CrossRefGoogle Scholar
  111. Terrones, M. et al.: Molecular junctions by joining single-walled carbon nanotubes. Phys. Rev. Lett. 89(7), 075505-1-4 (2002)Google Scholar
  112. Terrones, M., et al.: Carbon nitride nanocomposites: formation of aligned CxNy nanofibers. Adv. Mater. 11(8), 655–658 (1999)CrossRefGoogle Scholar
  113. Terrones, M., Filho, A.G.S., Rao, A.M.: Doped carbon nanotubes: synthesis, characterization and applications. In: Jorio, A., Dresselhaus, G., Dresselhaus, M.S. (eds.) Carbon Nanotubes, Topics in Applied Physics, vol. 111, pp. 531–566. Springer, Berlin (2008)Google Scholar
  114. Terrones, H., Lv, R., Terrones, M., Dresselhaus, M.S.: The role of defects and doping in 2D graphene sheets and 1D nanoribbons. Rep. Prog. Phys. 75, 062501-1–06250130 (2012)CrossRefGoogle Scholar
  115. Thess, A., et al.: Crystalline ropes of metallic carbon nanotubes. Science 273, 483–487 (1996)CrossRefGoogle Scholar
  116. Tian, Y.: Optical properties of single-walled carbon nanotubes and nanobuds. Doctoral Dissertations. Aalto University publication, Aalto University, Finland (2012)Google Scholar
  117. Tian, Y., et al.: Analysis of the size distribution of single-walled carbon nanotubes using optical absorption spectroscopy. J. Phys. Chem. Lett. 1(7), 1143–1148 (2010)CrossRefGoogle Scholar
  118. Tirupathi, R.C., Ashok, D.B.: Introduction to finite elements in engineering, 2nd edn. Prentice-Hall, New Jersey (1997)Google Scholar
  119. To, C.W.S.: Bending and shear moduli of single–walled carbon nanotubes. Finite Elem. Anal. Des. 42(5), 404–413 (2006)CrossRefGoogle Scholar
  120. Tombler, T.W., et al.: Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 405, 769–772 (2000)CrossRefGoogle Scholar
  121. Tserpes, K.I., Papanikos, P.: Finite element modeling of single-walled carbon nanotubes. Compos. Part B-Eng. 36(5), 468–477 (2005)CrossRefGoogle Scholar
  122. Villalpando-Páez, F., et al.: Synthesis and characterization of long strands of nitrogen-doped single-walled carbon nanotubes. Chem. Phys. Lett. 424, 345–352 (2006)CrossRefGoogle Scholar
  123. Vouris, P.A.: Molecular electronics with carbon nanotubes. Acc. Chem. Res. 35, 1026–1034 (2002)CrossRefGoogle Scholar
  124. Wal, V., Randall, L., Ticich, T.M.: Flame and furnace synthesis of single-walled and multi-walled carbon nanotubes and nanofibers. J. Phys. Chem. B 105, 10249–10256 (2001)Google Scholar
  125. Wang, S.-D., et al.: Synthesis of carbon nanotubes by arc discharge in sodium chloride solution. Carbon 43, 1778–1814 (2005)CrossRefGoogle Scholar
  126. Wang, C.M., Zhang, Y.Y., Xiang, Y., Reddy, J.N.: Recent studies on buckling of carbon nanotubes. Appl. Mech. Rev. 63, 030804-1-18 (2010)Google Scholar
  127. Wei, C.: Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites. Nano Lett. 2(6), 647–650 (2002)CrossRefGoogle Scholar
  128. Wei, B.Q., Vajtai, R., Ajayan, P.M.: Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 79, 1172–1174 (2001)CrossRefGoogle Scholar
  129. Wei, D.C., et al.: Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9(5), 1752 (2009)CrossRefGoogle Scholar
  130. Wei, L., Yanhui, F., Jia, P., Xinxin, Z.: Effects of stone-wales defects on the thermal conductivity of carbon nanotubes. J. Heat Trans. 134, 092401-1-5 (2012)Google Scholar
  131. WenXing, B., ChangChun, Z., WanZhao, C.: Simulation of Young’s modulus of single-walled carbon nanotubes by molecular dynamics. Phys. B 352, 156–163 (2004)CrossRefGoogle Scholar
  132. Wilson, M., et al.: Nanotechnology: Basic Science and Emerging Technologies. Chapman and Hall/CRC, Boca Ratón (2002)CrossRefGoogle Scholar
  133. Wu, Y., Zhang, X., Leung, A.Y.T., Zhong, W.: An energy–equivalent model on studying the mechanical properties of single–walled carbon nanotubes. Thin wall struct. 44, 667–676 (2006)CrossRefGoogle Scholar
  134. Xiao, J.R., Staniszewski, J., Jr., J.W.G.: Tensile behaviors of graphene sheets and carbon nanotubes with multiple Stone–Wales defects. Mater. Sci. Eng. A 527, 715–723 (2010)Google Scholar
  135. Yamashita, A.M.A.S.: Carbon nanotube-based photonic devices: applications in nonlinear optics. In: Marulanda, J.M. (ed.) Carbon Nanotubes Applications on Electron Devices, pp. 367–386. InTech, Croatia (2011)Google Scholar
  136. Yao, Z., Postma, H.W.C., Balents, L., Dekker, C.: Carbon nanotube intramolecular junctions. Nature 402(6759), 273–276 (1999)CrossRefGoogle Scholar
  137. Yengejeh, S.I., AkbarZadeh, M., Öchsner, A.: On the buckling behavior of connected carbon nanotubes. Appl. Phys. A. 1–10. (2014)
  138. Yengejeh, S.I., AkbarZadeh, M., Öchsner, A.: Numerical charaterization of the shear behavior of hetero-junction carbon nanotubes. J. Nano Res-SW 26, 143–151 (2013)CrossRefGoogle Scholar
  139. Yengejeh, S.I., Delgado, J.M.P.Q., Lima, A.G.B.d. & Öchsner, A., 2014. Numerical Simulation of the Vibration Behavior of Curved Carbon Nanotubes. Adv. Mater. Sci. Eng., 2014, pp.815340-1-9Google Scholar
  140. Yu, W., Xi, W.X., Xianggui, N.: Atomistic simulation of the torsion deformation of carbon nanotubes. Model. Simul. Mater. Sci. Eng. 12, 1099–1107 (2004)CrossRefGoogle Scholar
  141. Zhou, Z.-J., et al.: Theoretical investigation on nonlinear optical properties of carbon nanotubes with Stone-Wales defect rings. J. Mater. Chem. C 2, 306–311 (2014)CrossRefGoogle Scholar
  142. Ziaee, S.: Torsional buckling of single-walled carbon nanotubes with multi-vacancy defects. J. Comput. Theor. Nanosci. 10(11), 2586–2590 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Griffith School of EngineeringGriffith University (Gold Coast Campus)SouthportAustralia
  2. 2.Protein Research CenterShahid Beheshti University, G.C.TehranIran
  3. 3.Fatigue and Fracture Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical EngineeringIran University of Science and TechnologyTehranIran

Personalised recommendations