Skip to main content

Role of Meniscus Shape in Large-Area Convective Particle Assembly

  • Chapter
  • First Online:
Crystallization of Nanoscaled Colloids

Part of the book series: Springer Theses ((Springer Theses))

  • 1048 Accesses

Abstract

Dense and uniform particle films are deposited using a robust version of the convective particle assembly process. We analyze how the shape of the gas-liquid interface and the three-phase contact line govern the stability of convective deposition and thus, the achievable quality of films. Interference microscopy indicates that a highly curved meniscus cannot compensate for the ubiquitous perturbation during deposition. A moderately curved meniscus provides flexibility to compensate and localize perturbation and enables reliable homogeneous deposition. We analyze which setup geometry and meniscus velocity yield appropriate meniscus shapes. The quality of the resulting films is analyzed and compared to the deposition conditions. Uniform films over areas beyond the centimeter range are accessible using the optimized process, which is suitable for functional particle coatings and templates for microstructured materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N.D. Denkov, O.D. Velev, P.A. Kralchevsky, I.B. Ivanov, H. Yoshimura, K. Nagayama, Mechnism of formation of two-dimensional crystals from latex particles on substrates. Langmuir 8, 3183–3190 (1992)

    Article  CAS  Google Scholar 

  2. T.P. Rivera, O. Lecarme, J. Hartmann, E. Rossitto, K. Berton, D. Peyrade, Assisted convective-capillary force assembly of gold colloids in a microfluidic cell: plasmonic properties of deterministic nanostructures. J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. 26(6), 2513–2519 (2008)

    Article  Google Scholar 

  3. X. Checoury, S. Enoch, C. Lopez, A. Blanco, Stacking patterns in self-assembly opal photonic crystals. Appl. Phys. Lett. 90, 161131 (2007)

    Article  Google Scholar 

  4. P. Jiang, J.F. Bertone, K.S. Hwang, V.L. Colvin, Single-crystal colloidal multilayers of controlled thickness. Chem. Mater. 11, 2132–2140 (1999)

    Article  CAS  Google Scholar 

  5. E. Vekris, V. Kitaev, D.D. Perovic, J.S. Aitchinson, G.A. Ozin, Visualization of stacking faults and their formation in colloidal photonic crystal films. Adv. Mater. 20, 1110–1116 (2008)

    Article  CAS  Google Scholar 

  6. S.G. Romanov, U. Peschel, M. Bardosova, S. Essig, K. Busch, Suppression of the critical angle of diffraction in thin-film colloidal photonic crystals. Phys. Rev. B: Condens. Matter Mater. Phys. 82, 115403 (2010)

    Article  Google Scholar 

  7. P. Kumnorkaew, Y.-K. Ee, N. Tansu, J.F. Gilchrist, Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays. Langmuir 24, 12150–12157 (2008)

    Article  CAS  Google Scholar 

  8. M. Bunzendahl, P.L.-V. Schaick, J.F.T. Conroy, C.E. Daitch, P.M. Norris, Convective self-assembly of stoeber sphere arrays for syntactic interlayer dielectrics. Colloids Surf. A: Physicochem. Eng. Aspects 182, 275–283 (2001)

    Article  CAS  Google Scholar 

  9. B.G. Prevo, E.W. Hon, O.D. Velev, Assembly and characterization of colloid-based antireflective coatings on multicrystalline silicon solar cells. J. Mater. Chem. 17, 791–799 (2007)

    Article  CAS  Google Scholar 

  10. K.W. Kho, Z.X. Shen, H.C. Zeng, K.C. Soo, M. Olivo, Deposition method for preparing SERS-active gold nanoparticle substrates. Anal. Chem. 77(22), 7462–7471 (2005)

    Article  CAS  Google Scholar 

  11. B.G. Prevo, D.M. Kuncicky, O.D. Velev, Engineered deposition of coatings from nano- andmicro-particles: a brief review of convective assembly at high volume fraction. Colloids Surf. A: Physicochem. Eng. Aspects 311, 2–10 (2007)

    Article  CAS  Google Scholar 

  12. N.H. Finkel, B.G. Prevo, O.D. Velev, L. He, Ordered silicon nanocavity arrays in surface-assisted desorption/ionization mass spectrometry. Anal. Chem. 77, 1088–1095 (2005)

    Article  CAS  Google Scholar 

  13. A.D. Ormonde, E.C.M. Hicks, J. Castillo, R.P.V. Duyne, Nanosphere lithography: Fabrication of large-area Ag nanoparticle arrays by convective self-assembly and their characterization by scanning UV-Visible extinction spectroscopy. Langmuir 20, 6927–6931 (2004)

    Article  CAS  Google Scholar 

  14. G.S. Lozano, L.A. Dorado, R.A. Depine, H. Miguez, Towards a full understanding of the growth dynamics and optical response of self-assembled photonic colloidal crystal films. J. Mater. Chem. 19, 185–190 (2009)

    Article  CAS  Google Scholar 

  15. C.D. Dushkin, G.S. Lazarov, S.N. Kotsev, H. Yoshimura, K. Nagayama, Effect of growth conditions on the structure of two-dimensional latex crystals: experiment. Colloid Polym. Sci. 277, 914–930 (1999)

    Article  CAS  Google Scholar 

  16. B.G. Prevo, O.D. Velev, Controlled, rapid deposition of structured coatings from micro- and nanoparticle suspensions. Langmuir 20, 2099–2107 (2004)

    Article  CAS  Google Scholar 

  17. H.J. Schöpe, A.B. Fontecha, H. König, J.M. Hueso, R. Biehl, Fast microscopic method for large scale determination of structure, morphology, and quality of thin colloidal crystals. Langmuir 22, 1828–1838 (2006)

    Article  Google Scholar 

  18. L. Meng, H. Wei, A. Nagel, B.J. Wiley, L.E. Scriven, D.J. Norris, The role of thickness transitions in convective assembly. Nano Lett. 6(10), 2249–2253 (2006)

    Article  CAS  Google Scholar 

  19. J. Hilhorst, V.V. Abramova, A. Sinitskii, N.A. Sapoletova, K.S. Napolskii, A.A. Eliseev, D.V. Byelov, N.A. Grigoryeva, A.V. Vasilieva, W.G. Bouwman, K. Kvashnina, A. Snigirev, S.V. Grigoriev, A.V. Petukhov, Double stacking faults in convectively assembled crystals of colloidal spheres. Langmuir 25, 10408–10412 (2009)

    Article  CAS  Google Scholar 

  20. H. Cao, D. Lan, Y. Wang, A.A. Volinsky, L. Duan, H. Jiang, Fracture of colloidal single-crystal films fabricated by controlled vertical drying deposition. Phys. Rev. E: Stat. Nonlin. Soft Matter Phys. 82, 031602 (2010)

    Article  Google Scholar 

  21. D.J. Norris, E.G. Arlinghaus, L. Meng, R. Heiny, L.E. Scriven, Opaline photonic crystals: how does self-assembly work? Adv. Mater. 16, 1393–1399 (2004)

    Article  CAS  Google Scholar 

  22. D.D. Brewer, J. Allen, M.R. Miller, J.M. de Santos, S. Kumar, D.J. Norris, M. Tsapatsis, L.E. Scriven, Mechanistic principles of colloidal crystal growth by evaporation-induced convective steering. Langmuir 24, 13683–13693 (2008)

    Article  CAS  Google Scholar 

  23. D. Gasperino, I. Meng, D.J. Norris, J.J. Derby, The role of fluid flow and convective steering during the assembly of colloidal crystals. J. Cryst. Growth 310, 131–139 (2008)

    Article  CAS  Google Scholar 

  24. L. Malaquin, T. Kraus, H. Schmid, E. Delamarche, H. Wolf, Controlled particle placement through convective and capillary assembly. Langmuir 23, 11513–11521 (2007)

    Article  CAS  Google Scholar 

  25. R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Capillary flows as the cause of ring stains from dried liquid drops. Nature 389, 827–829 (1997)

    Article  CAS  Google Scholar 

  26. A.D. Dimitrov, A. Nagayama, Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces. Langmuir 12, 1303–1311 (1996)

    Article  CAS  Google Scholar 

  27. S. Watanabe, K. Inukai, S. Mizuta, M.T. Miyahara, Mechanism for stripe pattern formation on hydrophilic surfaces by using convective self-assembly. Langmuir 25, 7287–7295 (2009)

    Article  CAS  Google Scholar 

  28. K. Chen, S.V. Stoianov, J. Bangerter, H.D. Robinson, Restricted meniscus convective self-assembly. J. Colloid Interface Sci. 344, 315–320 (2010)

    Article  CAS  Google Scholar 

  29. J. Kleinert, S. Kim, O.D. Velev, Electric-field-assisted convective assembly of colloidal crystal coatings. Langmuir 26, 10380–10385 (2010)

    Google Scholar 

  30. M. Sujanani, P.C. Wayner, Transport processes and interfacial phenomena in an evaporating meniscus. Chem. Eng. Commun. 118, 89–110 (1992)

    Article  CAS  Google Scholar 

  31. T. Young, An Essay on the Cohesion of Fluids. Philosophical Transactions of the Royal Society of London, 95, 65–87 (1805)

    Google Scholar 

  32. R. Eötvös, Ueber den Zusammenhang der Oberflächenspannung der Flüssigkeiten mit ihrem Molecularvolumen. Ann. Phys. 263(3), 448–459 (1886)

    Article  Google Scholar 

  33. P.G. de Gennes, F. Brochard-Wyart, D. Quéré, Capillarity and Wetting Phenomena (Springer Science+Bussiness Media, LLC, 2004)

    Book  Google Scholar 

  34. P.D. de Gennes, Wetting: statics and dynamics. Rev. Mod. Phys. 57(3), 827–863 (1985)

    Article  Google Scholar 

  35. P.G. de Gennes, X. Hua, P. Levinson, Dynamics of wetting: local contact angles. J. Fluid Mech. 212, 55–63 (1990)

    Article  Google Scholar 

  36. J.F. Joanny, P.G. de Gennes, A model for contact angle hysteresis. J. Chem. Phys. 81(1), 552–562 (1984)

    Article  CAS  Google Scholar 

  37. E. Raphael, P.G. de Gennes, Dynamics of wetting with nonideal surfaces. The single defect problem. J. Chem. Phys. 90(12), 7577–7584 (1989)

    Article  CAS  Google Scholar 

  38. R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T. Witten, Contact line deposits in an evaporating drop. Phys. Rev. E: Stat. Nonlin. Soft Matter Phys. 62(1), 756–765 (2000)

    Article  CAS  Google Scholar 

  39. R.D. Deegan, Pattern formation in drying drops. Phys. Rev. E: Stat. Nonlin. Soft Matter Phys. 61(1), 475–485 (2000)

    Article  CAS  Google Scholar 

  40. E.C.H. Ng, K.M. Chin, C.C. Wong, Controlling inplane orientation of a monolayer colloidal crystal by meniscus pinning. Langmuir 27, 2244–2249 (2011)

    Article  CAS  Google Scholar 

  41. G.D. Nadkarni, S. Garoff, An investigation of microscopic aspects of contact angle hysteresis: pinning of the contact line on a single defect. Europhys. Lett. 20(6), 523–528 (1992)

    Google Scholar 

  42. E. Adachi, A.S. Dimitrov, K. Nagayama, Stripe patterns formed on a glass surface during droplet evaporation. Langmuir 11, 1057–1060 (1995)

    Article  CAS  Google Scholar 

  43. ImageJ.http://rsb.info.nih.gov/ij

  44. S.R. Sternberg, Biomedical image processing. Computer 16, 22–34 (1983)

    Article  Google Scholar 

  45. I.F. Sbalzarini, P. Koumoutsakos, Feature point tracking and trajectory analysis for video imaging in cell biology. J. Struct. Biol. 151, 182–195 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip G Born .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Born, P.G. (2013). Role of Meniscus Shape in Large-Area Convective Particle Assembly. In: Crystallization of Nanoscaled Colloids. Springer Theses. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00230-9_2

Download citation

Publish with us

Policies and ethics