Skip to main content

Part of the book series: Grundlehren der mathematischen Wissenschaften ((GL,volume 348))

Abstract

This chapter provides a general framework for the investigation of symmetric Markov diffusion semigroups and operators. Based on the early observations of the first chapter and on the investigation of the model examples, it develops all the fundamental properties which will justify the computations in the following chapters in the most convenient framework. The main setting consisting of a Markov Triple (E,μ,Γ) describes a convenient framework to develop the formalism of Markov semigroups and the Γ-calculus towards functional inequalities and convergence to equilibrium. The analysis of the concrete example of second order differential operators on smooth complete connected manifolds is the guide for the description, in this framework, of some main features such as connexity, completeness, weak hypo-ellipticity etc. With the main tool of essential self-adjointness at the center of the construction, the chapter emphasizes the relevant hypotheses and properties of Full Markov Triples, in force throughout the monograph, covering the main examples of illustrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. D. Bakry, Transformations de Riesz pour les semi-groupes symétriques. II. Étude sous la condition Γ2≥0, in Séminaire de Probabilités, XIX, 1983/84. Lecture Notes in Math., vol. 1123 (Springer, Berlin, 1985), pp. 145–174

    Google Scholar 

  2. D. Bakry, Étude des transformations de Riesz dans les variétés Riemanniennes à courbure de Ricci minorée, in Séminaire de Probabilités, XXI. Lecture Notes in Math., vol. 1247 (Springer, Berlin, 1987), pp. 137–172

    Chapter  Google Scholar 

  3. D. Bakry, The Riesz transforms associated with second order differential operators, in Seminar on Stochastic Processes, Gainesville, FL, 1988. Progr. Probab., vol. 17 (Birkhäuser, Boston, 1989), pp. 1–43

    Google Scholar 

  4. D. Bakry, L’hypercontractivité et son utilisation en théorie des semigroupes, in Lectures on Probability Theory, Saint-Flour, 1992. Lecture Notes in Math., vol. 1581 (Springer, Berlin, 1994), pp. 1–114

    Chapter  Google Scholar 

  5. D. Bakry, On Sobolev and logarithmic Sobolev inequalities for Markov semigroups, in New Trends in Stochastic Analysis, Charingworth, 1994 (World Sci., River Edge, 1997), pp. 43–75

    Google Scholar 

  6. D. Bakry, Functional inequalities for Markov semigroups, in Probability Measures on Groups: Recent Directions and Trends (Tata Inst. Fund. Res, Mumbai, 2006), pp. 91–147

    Google Scholar 

  7. D. Bakry, F. Baudoin, M. Bonnefont, D. Chafaï, On gradient bounds for the heat kernel on the Heisenberg group. J. Funct. Anal. 255(8), 1905–1938 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. D. Bakry, M. Émery, Diffusions hypercontractives, in Séminaire de Probabilités, XIX, 1983/1984. Lecture Notes in Math., vol. 1123 (Springer, Berlin, 1985), pp. 177–206

    Google Scholar 

  9. D. Bakry, M. Ledoux, Sobolev inequalities and Myers’s diameter theorem for an abstract Markov generator. Duke Math. J. 85(1), 253–270 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. F. Baudoin, N. Garofalo, Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries. Preprint, 2012

    Google Scholar 

  11. J.-M. Bismut, Large Deviations and the Malliavin Calculus. Progress in Mathematics, vol. 45 (Birkhäuser, Boston, 1984)

    MATH  Google Scholar 

  12. N. Bouleau, F. Hirsch, Dirichlet Forms and Analysis on Wiener Space. de Gruyter Studies in Mathematics, vol. 14 (Walter de Gruyter, Berlin, 1991)

    Book  MATH  Google Scholar 

  13. K.D. Elworthy, Stochastic Differential Equations on Manifolds. London Mathematical Society Lecture Note Series, vol. 70 (Cambridge University Press, Cambridge, 1982)

    Book  MATH  Google Scholar 

  14. K.D. Elworthy, Geometric aspects of diffusions on manifolds, in École d’Été de Probabilités de Saint-Flour XV–XVII, 1988–87. Lecture Notes in Math., vol. 1362 (Springer, Berlin, 1985), pp. 277–425

    Google Scholar 

  15. M. Fukushima, Dirichlet Forms and Markov Processes. North-Holland Mathematical Library, vol. 23 (North-Holland, Amsterdam, 1980)

    Book  MATH  Google Scholar 

  16. M. Fukushima, Y. Oshima, M. Takeda, Dirichlet Forms and Symmetric Markov Processes. de Gruyter Studies in Mathematics, vol. 19 (Walter de Gruyter, Berlin, 2011), extended edn.

    MATH  Google Scholar 

  17. M.P. Gaffney, The conservation property of the heat equation on Riemannian manifolds. Commun. Pure Appl. Math. 12, 1–11 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  18. A. Grigor’yan, Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Am. Math. Soc. (N.S.) 36(2), 135–249 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Grigor’yan, Heat Kernel and Analysis on Manifolds. AMS/IP Studies in Advanced Mathematics, vol. 47 (American Mathematical Society, Providence, 2009)

    MATH  Google Scholar 

  20. A. Grigor’yan, Yau’s work on heat kernels, in Geometry and Analysis. No. 1. Adv. Lect. Math. (ALM), vol. 17 (Int. Press, Somerville, 2011), pp. 113–117

    Google Scholar 

  21. F. Hirsch, Intrinsic metrics and Lipschitz functions. J. Evol. Equ. 3(1), 11–25 (2003). Dedicated to Philippe Bénilan

    Article  MATH  MathSciNet  Google Scholar 

  22. L. Hörmander, Differential operators with constant coefficients, in The Analysis of Linear Partial Differential Operators. II. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 257 (Springer, Berlin, 1983)

    Google Scholar 

  23. L. Hörmander, Distribution theory and Fourier analysis, in The Analysis of Linear Partial Differential Operators. I, 2nd edn. (Springer, Berlin, 1990). Springer Study Edition

    Chapter  Google Scholar 

  24. E.P. Hsu, Stochastic Analysis on Manifolds. Graduate Studies in Mathematics, vol. 38 (American Mathematical Society, Providence, 2002)

    MATH  Google Scholar 

  25. H.-Q. Li, Estimation optimale du gradient du semi-groupe de la chaleur sur le groupe de Heisenberg. J. Funct. Anal. 236(2), 369–394 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. H.-Q. Li, Estimations asymptotiques du noyau de la chaleur sur les groupes de Heisenberg. C. R. Math. Acad. Sci. Paris 344(8), 497–502 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Z.M. Ma, M. Röckner, Introduction to the Theory of (Nonsymmetric) Dirichlet Forms. Universitext (Springer, Berlin, 1992)

    Book  Google Scholar 

  28. V.G. Maz’ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 342 (Springer, Heidelberg, 2011). augmented ed.

    MATH  Google Scholar 

  29. R.S. Strichartz, Analysis of the Laplacian on the complete Riemannian manifold. J. Funct. Anal. 52(1), 48–79 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  30. D.W. Stroock, An Introduction to the Analysis of Paths on a Riemannian Manifold. Mathematical Surveys and Monographs, vol. 74 (American Mathematical Society, Providence, 2000)

    MATH  Google Scholar 

  31. K.-T. Sturm, Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and L p-Liouville properties. J. Reine Angew. Math. 456, 173–196 (1994)

    MATH  MathSciNet  Google Scholar 

  32. K.-T. Sturm, Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations. Osaka J. Math. 32(2), 275–312 (1995)

    MATH  MathSciNet  Google Scholar 

  33. C. Villani, Hypocoercivity. Mem. Am. Math. Soc. 202, 950 (2009), pp. iv+141

    MathSciNet  Google Scholar 

  34. S.-T. Yau, On the heat kernel of a complete Riemannian manifold. J. Math. Pures Appl. 57(2), 191–201 (1978)

    MATH  MathSciNet  Google Scholar 

  35. B. Zegarliński, Analysis on extended Heisenberg group. Ann. Fac. Sci. Toulouse 20(2), 379–405 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bakry, D., Gentil, I., Ledoux, M. (2014). Symmetric Markov Diffusion Operators. In: Analysis and Geometry of Markov Diffusion Operators. Grundlehren der mathematischen Wissenschaften, vol 348. Springer, Cham. https://doi.org/10.1007/978-3-319-00227-9_3

Download citation

Publish with us

Policies and ethics