Skip to main content

Engineering Implications of the Oxidation of Pyrite: An Overview, with Particular Reference to Ireland

  • Chapter
  • First Online:
Implications of Pyrite Oxidation for Engineering Works

Abstract

This overview provides a background to the processes by which the oxidation of iron sulphides can lead to distress in structures, with particular reference to the problems which have occurred in Dublin in the 2000s. It discusses the formation of pyrite and pyrrhotite and the chemical reactions involved in their oxidation, the effects of the oxidation process and how its by-products can lead to both heave and/or the degradation of concrete. Examples are provided from Canada, the UK and Ireland. Attention is drawn to the significance of the different forms of iron sulphide and the nature of the various host lithologies. The factors which affect the rate/extent of oxidation are considered. Having reviewed the relevant guides and Standards, attention is drawn to some difficulties in assessing the potential for sulphate-related damage to structures and the limitations of the documentation currently available. Some common misunderstandings in interpreting the results of both physical and chemical tests on pyritiferous material are discussed. Acceptability criteria and the assessment of marginal material are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Álvarez-Iglesias, P., & Rubio, B. (2012). Early diagenesis of organic-matter-rich sediments in a ría environment: Organic matter sources, pyrites morphology and limitation of pyritization at depth. Estuarine, Coastal and Shelf Science, 100, 113–123.

    Article  Google Scholar 

  • Anon, J. (1994). The “Mundic” problem—A guidance note. London: Royal Institution of Chartered Surveyors, RICS.

    Google Scholar 

  • ASTM. (2012). ASTM C295/C295 M—12. Standard Guide for Petrographic Examination of Aggregates for Concrete. Pennsylvania: ASTM International.

    Google Scholar 

  • Barber, L. J. (1996). Investigation and assessment of cohesive soils for lime stabilisation. Advances in site investigation practice. Thomas Telford. 97–108

    Google Scholar 

  • Barclay, W. J., Taylor, K., & Thomas, L. P. (1988). Geology of the South Wales Coalfield, Part V, the country around Merthyr Tydfil. Memoir for 1:50 000 Geological Sheet 231. London: HMSO.

    Google Scholar 

  • Bérard, J., Roux, R., & Durand, M. (1975). Performance of concrete containing a variety of black shale. Canadian Journal of Civil Engineering, 2(1), 58–65.

    Article  Google Scholar 

  • Berner, R.A. (1972). Sulfate reduction, pyrite formation, and the oceanic sulfur budget. In: The Changing Chemistry of the Oceans: Nobel Symposium 20 (eds. D. Dyrssen and D.Jagner) Almqvist and Wiksell, 347–36I.

    Google Scholar 

  • Berner, R. A. (1974). Iron sulfides in Pleistocene deep Black Sea sediments and their paleooceanographic significance. In E. T. Degens, and D. A. Ross (Eds.) The Black Sea—Geology, chemistry and biology (pp. 524–531). Tulsa: Memoir 20, American Association of Petroleum Geologists.

    Google Scholar 

  • Berner, R. A. (1982). Burial of organic carbon and pyrite sulfur in modern oceans: its geochemical and environmental significance. American Journal of Science, 282, 451–473.

    Article  Google Scholar 

  • Berner, R. A. (1984). Sedimentary pyrite formation: An update. Geochimica et Cosmochimica Acta, 48, 605–615.

    Article  Google Scholar 

  • Bérubé, M., Locat, J., Gelinas, P., Chagnon, J., & LeFrancois, P. (1986). Black shale heaving at Sainte-Foy, Quebec, Canada. Canadian Journal of Earth Sciences, 23, 1774–1781.

    Article  Google Scholar 

  • Bessey, G. E., & Lea, F. M. (1953). The distribution of sulphates in clay soils and groundwaters. Proceedings of the Institution of Civil Engineers, 2, 159–181.

    Article  Google Scholar 

  • Bickerdike, J., Allen, B. (1972). Building Failure Sheet 14—Solid floor on a shale fill. Building, 14 April.

    Google Scholar 

  • BRE. (1979). Fill and hardcore. BRE Digest 222. Watford: Building Research Establishment (withdrawn 1983).

    Google Scholar 

  • BRE. (1983). Hardcore. BRE Digest 276. Bracknell: Building Research Establishment.

    Google Scholar 

  • BRE. (1991). Why do buildings crack? BRE Digest 361. Bracknell: Building Research Establishment.

    Google Scholar 

  • BRE. (2005). Concrete in aggressive ground. Special Digest 1. Bracknell: Building Research Establishment.

    Google Scholar 

  • British Standards Institute (BSI). (1954). BS 882. Coarse and fine aggregate from natural sources for concrete. London: British Standards Institution.

    Google Scholar 

  • British Standards Institute (BSI). (1999). BS 5930:1999. Code of Practice for Site Investigation. London: British Standards Institution.

    Google Scholar 

  • British Standards Institute (BSI). (2003a). BS EN 13285:2010. Unbound mixtures. Specifications. London: BSI.

    Google Scholar 

  • British Standards Institute (BSI). (2003b). BS EN ISO 14689-1:2003. Geotechnical investigation and testing. Identification and classification of rock. Identification and description. London: BSI.

    Google Scholar 

  • British Standards Institute (BSI). (2008a). BS EN 13242:2002 + A1:2007. Aggregates for unbound and hydraulically bound materials for use in civil engineering work and road construction. London: BSI.

    Google Scholar 

  • British Standards Institute (BSI). (2008b). BS EN 12620:2002 + A1:2008. Aggregates for concrete. BSI, London.

    Google Scholar 

  • British Standards Institute (BSI). (2010). BS EN 1744-1:2009. Tests for chemical properties of aggregates. Part 1: Chemical analyses. BSI, London.

    Google Scholar 

  • Bromley, A., & Pettifer, K. (1997). Sulfide-related degradation of concrete in Southwest England (The Mundic problem).BRE Laboratory Report 325. Building Research Establishment.

    Google Scholar 

  • Bryant, L. D. (2003). Geotechnical problems with pyritic rock and soil. MSc Thesis, Virginia Polytechnic Institute and State University. Unpublished.

    Google Scholar 

  • Building Regulations. (2004). Building Regulations 1997: Technical Guidance Document C. Site Preparation and Resistance to Moisture.

    Google Scholar 

  • Building Regulations. (2005). Building Regulations 2000: Technical Guidance Document D. Materials and Workmanship.

    Google Scholar 

  • Butler, I. B., & Rickard, D. (2000). Framboidal pyrite formation via the oxidation of iron (II) monosulfide by hydrogen sulphide. Geochimica et Cosmochimica Acta, 64(15), 2665–2672.

    Article  Google Scholar 

  • Chinchón-Payá, S., Aguado, A., & Chinchón, S. (2012). A comparative investigation of the degradation of pyrite and pyrrhotite under simulated laboratory conditions. Engineering Geology, 127, 75–80.

    Article  Google Scholar 

  • Clayton, G., Haughey, N., Sevastopulo, G. D., & Burnett, R. D. (1989). Thermal maturation levels in the Devonian and Carboniferous rocks in Ireland. Ireland: Special Publication of the Geological Survey of Ireland.

    Google Scholar 

  • Collins, R. J. (1990). Case studies of floor heave due to microbiological activity in pyritic shales. In P. Howsam (Ed.), Microbiology in civil engineering. Cambridge: University Press.

    Google Scholar 

  • Comité Technique Québécois D’étude Des Problèmes De Gonflement Associés à La Pyrite. (2001). Appraisal procedure for existing residential buildings. Procedure CTQ-M200, Version 2.0, June 4.

    Google Scholar 

  • Coveney, R. M., & Parizek, E. J. (1977). Deformation of mine floor by sulfide alteration. Bulletin of the Association of Engineering Geologists, 14, 131–156.

    Google Scholar 

  • CSA Group. (2004). Geothermal energy resource map of Ireland. Final report prepared for Sustainable Energy Ireland.

    Google Scholar 

  • Czerewko, M. A., & Cripps, J. C. (2006). Sulfate and sulfide minerals in the UK and their implications for the built environment. IAEG 2006 Paper number 121. Geological Society of London.

    Google Scholar 

  • Czerewko, M. A., Cripps, J. C., Duffell, C. G., & Reid, J. M. (2003a). The distribution and evaluation of sulfur species in geological materials and manmade fills. Cement and Concrete Composites, 25, 1025–1034.

    Article  Google Scholar 

  • Czerewko, M. A., Cripps, J. C., Reid, J. M., & Duffell, C. G. (2003b). The development of a new testing protocol for sulphur compounds in structural backfills. Quarterly Journal of Engineering Geology and Hydrogeology, 36, 133–142.

    Article  Google Scholar 

  • Duchesne, J., & Fournier, B. (2011). Petrography of concrete deteriorated by weathering of sulphide minerals. Proposed Paper for the 33rd International Conference on Cement Microscopy. Omni San Francisco Hotel, San Francisco, California, U.S.A. l7–20 April 2011.

    Google Scholar 

  • Eden, M. (2013). Testing of potentially pyritiferous material. Berlin: Springer, pp 25.

    Google Scholar 

  • Edmonds, E. A., Whittaker, A., & Williams, B. J. (1985). Geology of the country around Ilfracombe and Barnstaple. London: HMSO.

    Google Scholar 

  • Edmonds, E. A., Wright, J. E., Beer, K. E., Hawkes, J. R., Williams, M., Freshney, E. C., Fenning P. J. (1968). Geology of the country around Okehampton. London: HMSO.

    Google Scholar 

  • Fanning, D. S., & Fanning, M. C. B. (1989). Soil morphology, genesis, and classification. New York: Wiley.

    Google Scholar 

  • Fasiska, E., Wagenblast, N., & Dougherty, M. T. (1974). The oxidation mechanisms of sulphide minerals. Bulletin of the Association of Engineering Geology, 11, 75–82.

    Google Scholar 

  • Farrimond, P., Comet, P., Eglinton, G., Evershed, R. P., Hall, M. A., Park, D. W., et al. (1984). Organic geochemical study of the Upper Kimmeridge Clay of the Dorset type area. Marine and Petroleum Geology, 1, 340–354.

    Article  Google Scholar 

  • Finnegan, P., & Hawkins, A. B. (2013). Remediation of senior citizens’ dwellings affected by pyrite-induced heave. Berlin: Springer.

    Google Scholar 

  • Forde, P. M. (2013). The effect of pyrite-related heave: a structural engineer’s perspective. Berlin: Springer, pp 18.

    Google Scholar 

  • Fortey, R. A., & Owns, R. M. (1978). Early Ordovician (Arenig) stratigraphy and faunas of the Carmarthen district, south-west Wales. Bulletin of the British Museum (Natural History) (Geology) 45, 1–20.

    Google Scholar 

  • Goodhue, R., & Clayton, G. (2012). The application of a new thermal maturity indicator, the Palynomorph Darkness Index (PDI). GSA Denver Annual Meeting (31 Oct–3 Nov).

    Google Scholar 

  • Grattan-Bellew, P. E., & Eden, W. J. (1975). Concrete deterioration and floor heave due to biogeochemical weathering of underlying shale. Canadian Geotechnical Journal, 12, 372–378.

    Article  Google Scholar 

  • Grattan-Bellew, P. E., & McRostie, G. C. (1982). Evaluation of heave prevention methods for floors founded on shale in the Ottawa region. Canadian Geotechnical Journal, 19(1), 108–111.

    Article  Google Scholar 

  • Greaves, H. M. (1996). An introduction to lime stabilization. In Proceedings, Seminar on Lime Stabilization, Loughborough University:Civil and Building Engineering Department.

    Google Scholar 

  • Hawkins, A. B. (1998). Engineering significance of ground sulphates. In Robertson, P. K., & Mayne, P. W. (Eds.), Geotechnical site characterization (pp. 685–692).

    Google Scholar 

  • Hawkins, A. B. (2012). Sulphate heave: a model to explain the rapid rise of ground-bearing floor slabs. Bulletin of Engineering Geology and the Environment, 71(1), 113–117.

    Article  Google Scholar 

  • Hawkins, A. B. (2013). Some engineering geological effects of drought: examples from the UK Bulletin of Engineering Geology and the Environment, 72 (1), 37–60. Erratum Bulletin of Engineering Geology and the Environment 72, pp 2.

    Google Scholar 

  • Hawkins, A. B., & Higgins, M. D. (1997a). The generation of sulphates in the proximity of cast in situ piles. In A. B. Hawkins (Ed.), Ground chemistry: Implications for construction. Netherlands: Balkema.

    Google Scholar 

  • Hawkins, A. B., & Higgins, M. D. (1997b). Development of ground sulphates in Ordovician deposits: A case study. In P. G Marinos, G. C. Koukis, G. C. Tsiambaos, & G. C. Stourmaras (Eds.), Engineering geology and the environment. Rotterdam: Balkema.

    Google Scholar 

  • Hawkins, A. B., & McDonald, C. (1992). Decalcification and residual shear strength reduction in Fuller’s Earth Clay. Géotechnique, 42, 453–464.

    Article  Google Scholar 

  • Hawkins, A. B., & Pinches, G. M. (1986). Timing and correct chemical testing of soils/weak rock. In A. B. Hawkins (Ed.), Site investigation practice: assessing BS 5930 (pp. 273–277). Belfast: Geological Society Special Publication.

    Google Scholar 

  • Hawkins, A. B., & Pinches, G. M. (1987a). Cause and significance of heave at Llandough Hospital, Cardiff—a case history of ground floor heave due to gypsum growth. Quarterly Journal of Engineering Geology, 20, 41–57.

    Article  Google Scholar 

  • Hawkins, A. B., & Pinches, G. M. (1987b). Sulphate analysis on black mudstones. Géotechnique, 37(2), 191–196.

    Article  Google Scholar 

  • Hawkins, A. B., & Pinches, G. M. (1988). Sulphate analysis on black mudstones: Discussion. Géotechnique, 38(2), 322–323.

    Article  Google Scholar 

  • Hawkins, A. B., & Pinches, G. M. (1992). Engineering description of mudrocks. Quarterly Journal of Engineering Geology, 25, 17–30.

    Article  Google Scholar 

  • Hawkins, A. B., & Pinches, G. M. (1997). Understanding sulphate generated heave resulting from pyrite degradation. In A. B. Hawkins (Ed.), Ground chemistry: Implications for construction. Netherlands: Balkema.

    Google Scholar 

  • Hawkins, A. B., & Stevens, M. (2013). Problems associated with the use of pyritiferous fill at Ballymun youth facility, Dublin. Berlin: Springer.

    Google Scholar 

  • Hawkins, A. B., & St John, T. W. (2013a). Iron sulphides and surface heating: further engineering considerations for the Dublin area. Berlin: Springer, pp 32.

    Google Scholar 

  • Hawkins, A. B., & St John, T. W. (2013b). Importance of understanding the development and significance of sulphates in the London Clay. In Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris 2013. Manuscript accepted.

    Google Scholar 

  • Hawkins, A. B., & Wilson, S. L. S. (1990). Sulphate increase in laboratory prepared samples. Quarterly Journal of Engineering Geology, 23, 383–385.

    Article  Google Scholar 

  • Highways Agency. (2007). Treatment of fill and capping materials using either lime or cement or both. HA74/00. Design manual for roads and bridges (Vol. 4, Sect. 1).

    Google Scholar 

  • Hilgers, C., Dilg-Gruschinski, K., & Urai, J. L. (2003). Microstructures grown experimentally from advective supersaturated solution and their implication for natural vein systems. Journal of Geochemical Exploration, 78–79, 221–225.

    Article  Google Scholar 

  • Homebond. (2006). Homebond House Building Manual (6th ed.). Dublin.

    Google Scholar 

  • Jones, G. L. (1992). Irish Carboniferous conodonts record maturation levels and the influence of tectonism, igneous activity and mineralisation. Terra Nova, 4(2), 238–244.

    Article  Google Scholar 

  • Hunter, D. (1988). Lime-induced heave in sulphate bearing clay soils. ASCE Journal of Geotechnical Engineering, 114, 150–167.

    Article  Google Scholar 

  • Jackson, S. D., & Cripps, J. C. (1997). Investigation of the effects of bacterial action on the chemistry and mineralogy of pyritic shale. In A. B. Hawkins (Ed.), Ground chemistry: Implications for construction. Netherlands: Balkema.

    Google Scholar 

  • Kalvoda, J., Bábek, O., Devuyst, F. X., & Sevastopulo, D. (2011). Biostratigraphy, sequence stratigraphy and gamma-ray spectrometry of the Tournaisian-Viséan boundary interval in the Dublin Basin. Bulletin of Geosciences, 86(4), 683–706.

    Article  Google Scholar 

  • Knill, J. L. (1975). Foundations on the Coal Measures. In F. G. Bell (Ed.), Site investigations in areas of mining subsidence. London: Newnes-Butterworths.

    Google Scholar 

  • Lea, F. M. (1968). Some studies on the performance of concrete structures in sulphate-bearing environments. In Swenson, E. G. (Ed.), Performance of concrete (p. 58). Toronto: University of Toronto Press.

    Google Scholar 

  • Legget, R. F., & Karrow, P. F. (1983). Handbook of geology in civil engineering. New York: McGraw-Hill.

    Google Scholar 

  • Lombard, J. (2013). Sampling potentially pyritiferous materials. Berlin: Springer.

    Google Scholar 

  • Loveland, P. J. (1988). Sulphate analysis on black mudstones: Discussion. Géotechnique, 38(2), 322–323.

    Article  Google Scholar 

  • Maher, M. J. (2013). The Canadian pyrite experience and comparisons with the Irish problems. Berlin: Springer, pp 36.

    Google Scholar 

  • Maher, M. J., Azzie, B., Gray, C., & Hunt, J. (2011). A large scale laboratory swell test to establish the susceptibility to expansion of crushed rock containing pyrite. Toronto: Pan-Am CGS Geotechnical Conference.

    Google Scholar 

  • McCarthy, M. J., Csetenyi, L. J., Roderick Jones, M., & Sachdeva, A. (2011). Clay-lime stabilization: characterizing fly ash effects in minimizing the risk of sulfate heave. 2011 World Of Coal Ash (WOCA) Conference, May 9–12, 2011, Denver, Co, USDA.

    Google Scholar 

  • McCarthy, M. J., Csetenyi, L. J., Sachdeva, A., & Dhir, R. K. (2012). Identifying the role of fly ash properties for minimizing sulfate-heave in lime-stabilised soils. Fuel, 92, 27–36.

    Google Scholar 

  • McConnell, B., & Philcox, P. (1994). Geology of Kildare—Wicklow, Sheet 16. Ireland: Geological Survey of Ireland.

    Google Scholar 

  • McConnell, B., Philcox, M., & Geraghty, M. (2001). Geology of Meath: Sheet 13, Meath. Ireland: Geological Survey of Ireland.

    Google Scholar 

  • Morgenstern, N. R. (1970). Black shale heaving at Ottawa, Canada: Discussion. Canadian Geotechnical Journal, 7(2), 114–115.

    Article  Google Scholar 

  • Mitchell, J. K. (1986). Delayed failure of lime-stabilised pavement bases. Journal of Geotechnical Engineering, 112, 274–279.

    Article  Google Scholar 

  • Moum, J., & Rosenqvist, I. T. (1959). Sulphate attack on concrete in the Oslo region. Journal of the American Concrete Institution, 56, 257–264.

    Google Scholar 

  • National Lime Association (NLA). (2000). Technical Memorandum: Guidelines for Stabilization of Soils Containing Sulfates. Arlington: NLA.

    Google Scholar 

  • National Roads Authority (NRA). (2000). Specification for Road Works. Manual of contract documents for road works (Vol. 1). Dublin: NRA.

    Google Scholar 

  • Notman, C. F. (2011). Durability testing of fine grained stabilised soils. MPhil Thesis, University of Nottingham, Unpublished.

    Google Scholar 

  • New Civil Engineer (NCE). (2004). Lime stabilisation layer suspected in case of buckling bypass. New Civil Engineering, Mar 2004. ICE Publishing.

    Google Scholar 

  • Nicholson, R. V., & Scharer, J. M. (1993). Laboratory Studies of Pyrrhotite Oxidation Kinetics. In Environmental geochemistry of sulfide oxidation (Vol. 550, pp. 14–30). ACS Symposium Series.

    Google Scholar 

  • Nixon, P. J. (1978). Floor heave in buildings due to the use of pyritic shales as fill material. Chemistry and Industry, 4, 160–164.

    Google Scholar 

  • Ohfuji, H., & Akai, J. (2002). Icosahedral domain structure of framboidal pyrite. American Mineralogist, 87, 176–180.

    Google Scholar 

  • Ohfuji, H., Boyle, A. P., Prior, D. J., & Rickard, D. (2005). Structure of framboidal pyrite: An electron backscatter diffraction study. American Mineralogist, 90, 1693–1704.

    Article  Google Scholar 

  • Penner, E., Eden, W. J., & Grattan-Bellew, P. E. (1973). Expansion of pyritic shales. Canadian Building Digest, 152, 1–4. (Ottawa: NRC).

    Google Scholar 

  • Penner, E., Gillott, J. E., & Eden, W. J. (1970). Investigation of heave in Billings Shale by mineralogical and biochemical methods. Canadian Geotechnical Journal, 7, 333–338.

    Article  Google Scholar 

  • Perry, J., Snowdon, R. A., & Wilson, P. E. (1996). Site investigation for lime stabilisation of highway works. Thomas Telford: Advances in site investigation practice.

    Google Scholar 

  • Potter, P. E., Maynard, J. B., & Prior, W. A. (1980). Sedimentology of Shale. New York: Springer-Verlag.

    Book  Google Scholar 

  • Pye, K., & Miller, J. A. (1990). Chemical and biochemical weathering of pyritic mudrocks in a shale embankment. Quarterly Journal of Engineering Geology, 23, 365–382.

    Article  Google Scholar 

  • Pyrite Panel (2012). Report of the Pyrite Panel. PDF [online]. Available: http://www.environ.ie/en/PublicationsDocuments/FileDownLoad,30735,en.pdf

  • Quigley, R. M., & Vogan, R. W. (1970). Black shale heaving at Ottawa, Canada. Canadian Geotechnical Journal, 7, 106–112.

    Article  Google Scholar 

  • Quigley, R. M., Zajic, J. E., McKyes, E., & Yong, R. N. (1973a). Biochemical alteration and heave of black shale: detailed observations and interpretations. Canadian Journal of Earth Science, 10, 1005–1015.

    Article  Google Scholar 

  • Quigley, R. M., Zajic, J. E., McKyes, E., & Yong, R. N. (1973b). Oxidation and heave of black shale. Journal of the Soil Mechanics and Foundation Engineering Division, 99, 417–421.

    Google Scholar 

  • Rickard, D. (1997). Kinetics of pyrite formation by the H2S oxidation of iron(II) monosulfides in aqueous solution between 25°C and 125°C: the rate equation. Geochimica et Cosmochimica Acta, 61, 115–134.

    Article  Google Scholar 

  • Rickard, D., Schoonen, M. A. A., & Luther, G. W. (1995). Chemistry of iron sulfides in sedimentary environments. In M. A. Vairavamurthy, & M. A. A. Schoonen (Eds.) Geochemical transformations of sedimentary sulfur (pp. 168–193). Washington, D.C.: American Chemical Society Symposium Series 612.

    Google Scholar 

  • Sandover, B. R., & Norbury, D. R. (1993). On an occurrence of abnormal acidity in granular soils. Quarterly Journal of Engineering Geology, 26, 149–153.

    Article  Google Scholar 

  • Shearman, D. J., Mossop, G., Dunsmore, H., & Martin, M. (1972). Origin of gypsum veins by hydraulic fracture. Transaction of the Institution of Mining Metallurgy (sect. B), 181, 149–155.

    Google Scholar 

  • Sherrell, F. W. (1979). Engineering properties and performance of clay fills. In Clay Fills (p. 241). London: Institution of Civil Engineers.

    Google Scholar 

  • Sherwood, P. T. (1967). Views of the Road Research Laboratory on soil stabilisation in the United Kingdom. Cement, Lime and Gravel, 42(9), 277–280.

    Google Scholar 

  • Sherwood, P. T. (1993). Soil stabilisation with cement and lime. Transport Research Laboratory State of the Art Review. HMSO.

    Google Scholar 

  • Snedker, E. A. (1996). Lime stabilization experiences. In CDF Rogers, S. Glendinning & N. Dixon (Eds.) Lime Stabilisation (pp. 142–153). Thomas Telford.

    Google Scholar 

  • Spanovich, M., & Fewell, R. B. (1969). The subject is pyrite. Pennsylvania Journal of Architecture, 49, 15–16.

    Google Scholar 

  • S.R. 21. (2004, 2007). Guidance on the use of I.S. EN 13242:2002—Aggregates for unbound and hydraulically bound materials for use in civil engineering work and road construction. Ireland: NSAI.

    Google Scholar 

  • Taber, S. (1918). The origin of veinlets in the Silurian and Devonian strata of central New York. Journal of Geology, 26, 56–73.

    Article  Google Scholar 

  • Thaumasite Expert Group. (1999). The thaumasite form of sulfate attack: risks, diagnosis, remedial works and guidance on new construction. London: Report of the Thaumasite Expert Group, DETR.

    Google Scholar 

  • Tomlinson, M. J. (1995). Foundation design and construction. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Transport Research Laboratory (TRL). (2001). Swell test requirements for lime stabilised materials. TRL Report 505.

    Google Scholar 

  • Transport Research Laboratory (TRL). (2005). Sulfate specification for structural backfills. TRL Report 447.

    Google Scholar 

  • Vishniac, W. V. (1974). Organisms metabolizing sulphur and sulphur compounds. The genus Thiobacillus. In R. E. Buchanen & N. E. Gibbons (Eds.) Bergey’s manual of determinative bacteriology. (8th ed., pp. 456–461). Baltimore: Williams and Williams

    Google Scholar 

  • Wellman, H. W., & Wilson, A. T. (1965). Salt weathering: a neglected geological erosive agent in coastal and arid environments. Nature, 205, 1097–1098.

    Article  Google Scholar 

  • West, G. (1996). Alkali-aggregate reaction in concrete roads and bridges. London: Thomas Telford.

    Book  Google Scholar 

  • Wilkin, R. T., & Barnes, H. L. (1997). Formation processes of framboidal pyrite. Geochimica et Cosmochimica Acta, 61(2), 323–339.

    Article  Google Scholar 

  • Wilson, E. J. (1987). Pyritic shale heave in the Lower Lias at Barry, Glamorgan. Quarterly Journal of Engineering Geology 20, 251–253.

    Google Scholar 

Download references

Acknowledgments

The author is grateful to Menolly Homes, Ballymun Regeneration, Dublin City and many others for agreement to use the photographs and information in the chapter. Particular acknowledgement is given to Mike Eden of Sandbergs who took many of the SEM photographs, Austin Murphy for his meticulous record-keeping and help with the data and Simon Powell for some of the photographic work. Much of the work in Ireland could not have been done without the help, encouragement and constructive criticism of James Lombard. I am also grateful for the assistance of Marcus Hawkins who prepared many of the diagrams and Tom St John who helped with the research and the manuscript. The contribution of past Ph.D students is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Brian Hawkins .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hawkins, A.B. (2014). Engineering Implications of the Oxidation of Pyrite: An Overview, with Particular Reference to Ireland. In: Implications of Pyrite Oxidation for Engineering Works. Springer, Cham. https://doi.org/10.1007/978-3-319-00221-7_1

Download citation

Publish with us

Policies and ethics