Skip to main content

From Clock Synchronization to Dark Matter as a Relativistic Inertial Effect

  • Conference paper
  • First Online:
Black Objects in Supergravity

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 144))

Abstract

One of the main open problems in astrophysics is the dominance of dark entities, the dark matter and the dark energy, in the existing description of the universe given by the standard \(\varLambda \)CDM cosmological model [1, 2] based on the cosmological principle (homogeneity and isotropy of the space-time), which selects the class of Friedmann-Robertson-Walker (FWR) space-times.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The fixed stars can be considered as an empirical definition of spatial infinity of the observable universe.

  2. 2.

    In these space-times the canonical Hamiltonian vanishes and the Dirac Hamiltonian is a combination of first-class constraints, so that it only generates Hamiltonian gauge transformations. In the reduced phase space, quotient with respect the Hamilonian gauge group, the reduced Hamiltonian is zero and one has a frozen picture of dynamics. This class of space-times fits well with Machian ideas (no boundary conditions) and with interpretations in which there is no physical time like the one in Ref. [45]. However, it is not clear how to include in this framework the standard model of particle physics.

  3. 3.

    While in SR Minkowski space-time is an absolute notion, unifying the absolute notions of time and 3-space of the non-relativistic Galilei space-time, in GR there is no absolute notion: space-time becomes dynamical [7981] with its metric structure satisfying Einstein equations.

  4. 4.

    Instead in Yang-Mills theory all the gauge variables are configurational.

  5. 5.

    It is based on Very Long Baseline Interferometry (VLBI) observations of distant quasars, on Lunar Laser Ranging (LLR) and on determination of GPS satellite orbits.

  6. 6.

    The meter is the length of the path traveled by light in vacuum during a time interval of \(1/c\) of a second.

  7. 7.

    See Ref. [109] for possible gravitational anomalies inside the Solar System.

  8. 8.

    It is the non-factual idealization required by the Cauchy problem generalizing the existing protocols for building coordinate system inside the future light-cone of a time-like observer.

  9. 9.

    \(\epsilon = \pm 1\) according to either the particle physics \(\epsilon = 1\) or the general relativity \(\epsilon = - 1\) convention.

  10. 10.

    \({\hat{n}}^r(\tau ,\sigma )\) defines the instantaneous rotation axis and \(0 < \tilde{\varOmega } (\tau ,\sigma ) < 2\, max\, \big ({\dot{{\tilde{\alpha }}}}(\tau ), {\dot{\tilde{\beta }}}(\tau ), {\dot{\tilde{\gamma }}}(\tau )\big )\).

  11. 11.

    Nearly rigid rotating systems, like a rotating disk of radius \(\sigma _o\), can be described by using a function \(F(\sigma )\) approximating the step function \(\theta (\sigma - \sigma _o)\).

  12. 12.

    It corresponds to the locality hypothesis of Ref. [47, 48], according to which at each instant of time the detectors of an accelerated observer give the same indications as the detectors of the instantaneously comoving inertial observer.

  13. 13.

    In the first paper of Ref. [77, 78] there is the definition of parametrized Galilei theories, non relativistic limit of the parametrized Minkowski theories. Also the inertial and non-inertial frames in Galilei space-time are gauge equivalent in this formulation.

  14. 14.

    Their Poisson brackets are \(\{ z^i, h^j\} = \delta ^{ij}\). \({{\varvec{x}}}_{NW}(\tau )\) is the standard Newton-Wigner non-covariant 3-position, classical counterpart of the corresponding position operator; the use of \({{\varvec{ z}}}\) avoids to take into account the mass spectrum of the isolated system in the description of the center of mass. The non-covariance of \({{\varvec{z}}}\) under Poincaré transformations \((a ,\varLambda )\) has the following form [76, 115] \(z^i\, \mapsto z^{{^{\prime }}\, i} = \Big (\varLambda ^i{}_j - {{\varLambda ^i{}_{\mu }\, h^{\mu }}\over {\varLambda ^o{}_{\nu }\, h^{\nu }}}\, \lambda ^o{}_j\Big )\, z^j + \Big (\varLambda ^i{}_{\mu } - {{\varLambda ^i{}_{\nu }\, h^{\nu }}\over {\varLambda ^o{}_{\rho }\, h^{\rho }}}\, \varLambda ^o{}_{\mu }\Big )\, (\varLambda ^{-1}\, a)^{\mu }\).

  15. 15.

    In the rest-frame the world-tube is a cylinder: in each instantaneous 3-space there is a disk of possible positions of the canonical 3-center of mass orthogonal to the spin. In the non-relativistic limit the radius \(\rho \) of the disk tends to zero and one recovers the non-relativistic center of mass.

  16. 16.

    The last term in the Lorentz boosts induces the Wigner rotation of the 3-vectors inside the Wigner 3-spaces.

  17. 17.

    One can show [5961, 65, 66] that one has \({{\varvec{{\mathcal{{K}}}}}}_{(int)} = - M\, {{\varvec{R}}}_+\), where \({{\varvec{R}}}_+\) is the internal Møller 3-center of energy inside the Wigner 3-spaces. The rest frame condition \({{{\varvec{\mathcal{{P}}}}}}_{(int)} \approx 0\) implies \({{\varvec{ R}}}_+ \approx {{\varvec{ q}}}_+ \approx {{\varvec{y}}}_+\), where \({{\varvec{ q}}}_+\) is the internal 3-center of mass and \({{\varvec{y}}}_+\) the internal Fokker-Pryce 3-center of inertia.

  18. 18.

    Equations (8.15) describe a family of canonical transformations, because the \(\gamma _{ai}\)’s depend on \({\frac{1}{2}}(N-1)(N-2)\) free independent parameters.

  19. 19.

    In Ref. [128] it was shown that the quantum Newton-Wigner position should not be a self-adjoint operator, but only a symmetric one, with an implication of bad localization.

  20. 20.

    These space-times must also be without Killing symmetries, because, otherwise, at the Hamiltonian level one should introduce complicated sets of extra Dirac constraints for each existing Killing vector.

  21. 21.

    The ACES mission of ESA [133135] will give the first precision measurement of the gravitational red-shift of the geoid, namely of the \(1/c^2\) deformation of Minkowski light-cone caused by the geo-potential. In every quantum field theory approach to gravity, where the definition of the Fock space requires the use of the Fourier transform on a fixed background space-time with a fixed light-cone, this is a non-perturbative effect requiring the re-summation of the perturbative expansion.

  22. 22.

    Since one uses the positive-definite 3-metric \(\delta _{(a)(b)} \), one will use only lower flat spatial indices. Therefore for the cotriads one uses the notation \({}^3e^{(a)}_r\,\, {def\over =}\, {}^3e_{(a)r}\) with \(\delta _{(a)(b)} = {}^3e^r_{(a)}\, {}^3e_{(b)r}\).

  23. 23.

    The Hamilton equations imply \({}^4\nabla _A\, T^{AB} \equiv 0\) in accord with Einstein’s equations and the Bianchi identity.

  24. 24.

    Both quantities are two-valued. The elementary electric charges are \(Q = \pm e\), with \(e\) the electron charge. Analogously the sign of the energy of a particle is a topological two-valued number (the two branches of the mass-shell hyperboloid). The formal quantization of these Grassmann variables gives two-level fermionic oscillators. At the classical level the self-energies make the classical equations of motion ill-defined on the world-lines of the particles. The ultraviolet and infrared Grassmann regularization allows to cure this problem and to get consistent solution of regularized equations of motion. See Refs. [65, 66] for the electro-magnetic case.

  25. 25.

    Due to the positive signature of the 3-metric, one defines the matrix \(V\) with the following indices: \(V_{ru}\). Since the choice of Shanmugadhasan canonical bases breaks manifest covariance, one will use the notation \(V_{ua} = \sum _v\, V_{uv}\, \delta _{v(a)}\) instead of \(V_{u(a)}\).

  26. 26.

    In the post-Newtonian approximation in harmonic gauges they are the counterpart of the electro-magnetic vector potentials describing magnetic fields [84]: (A) \(N = 1 + n\), \(n\, {\mathop {=}\limits ^{def}}\, - {{4\, \epsilon }\over {c^2}}\, \varPhi _G\) with \(\varPhi _G\) the gravito-electric potential; (B) \(n_r\, {\mathop {=}\limits ^{def}}\, {{2\, \epsilon }\over {c^2}}\, A_{G\, r}\) with \(A_{G\, r}\) the gravito-magnetic potential; (C) \(E_{G\, r} = \partial _r\, \varPhi _G - \partial _{\tau }\, ({1\over 2}\, A_{G\, r})\) (the gravito-electric field) and \(B_{G\, r} = \epsilon _{ruv}\, \partial _u\, A_{G\, v} = c\, \varOmega _{G\, r}\) (the gravito-magnetic field). Let us remark that in arbitrary gauges the analogy with electro-magnetism breaks down.

  27. 27.

    It describes gravito-magnetic effects.

  28. 28.

    This equation is relevant for studying the developments of caustics in a congruence of time-like geodesics for converging values of the expansion \(\theta \) and of singularities in Einstein space-times [137139]. However the boundary conditions of asymptotically Minkowskian space-times without super-translations should avoid the singularity theorems as it happens with their subfamily without matter of Ref. [40].

  29. 29.

    See the “\(1+3\) point of view” of Ref. [140] for a discussion of gravity in terms of the second non-surface-forming congruence of time-like observers associated with a \(3+1\) splitting of space-time.

  30. 30.

    It measures the average expansion of the infinitesimally nearby world-lines surrounding a given world-line in the congruence.

  31. 31.

    It measures how an initial sphere in the tangent space to the given world-line, which is Lie-transported along the world-line tangent \(l^{\mu }\) (i.e. it has zero Lie derivative with respect to \(l^{\mu }\, \partial _{\mu }\)), is distorted towards an ellipsoid with principal axes given by the eigenvectors of \(\sigma ^{\mu }{}_{\nu }\), with rate given by the eigenvalues of \(\sigma ^{\mu }{}_{\nu }\).

  32. 32.

    Quantities like \(|{{\varvec{{\eta }}}}_i(\tau ) - {{\varvec{{\eta }}}}_j(\tau )|\) are the Euclidean 3-distance between the two particles in the asymptotic 3-space \(\varSigma _{\tau (\infty )}\), which differs by quantities of order \(O(\zeta )\) from the real non-Euclidean 3-distance in \(\varSigma _{\tau }\) as shown in Eq. (3.3) of the third paper in Ref. [8890].

  33. 33.

    For the tidal momenta one gets \({{8\pi \, G}\over {c^3}}\, \varPi _{\bar{a}}(\tau , {\varvec{{\sigma }}}) = [\partial _{\tau }\, R_{\bar{a}} - \sum _a\, \gamma _{\bar{a}a}\, \partial _a\, {\bar{n}}_{(1)(a)}](\tau , {\varvec{{\sigma }}}) + O(\zeta ^2)\), so that the diagonal elements of the shear are \(\sigma _{(1)(a)(a)}(\tau , {\varvec{{\sigma }}}) = [- \sum _{\bar{a}}\, \gamma _{\bar{a}a}\, \partial _{\tau }\, R_{\bar{a}} + {\bar{n}}_{(1)(a)} - {1\over 3}\, \sum _b\, {\bar{n}}_{(1)(b)}](\tau , {\varvec{{\sigma }}}) + O(\zeta ^2)\).

  34. 34.

    See Eq. (7.20) of the second paper in Ref. [8890], where \({}^4g_{\tau \tau }(\tau , {\varvec{{\sigma }}})\) and \({}^4g_{\tau r}(\tau , {\varvec{{\sigma }}})\) are explicitly depending on the non-local York time.

  35. 35.

    The properties of HPM transverse electro-magnetic fields have still to be explored.

  36. 36.

    They imply that GW propagate not only on the flat light-cone but also inside it (i.e. with all possible speeds \(0 \le v \le c\)): there is an instantaneous wavefront followed by a tail traveling at lower speed (it arrives later and then fades away) and a persistent zero-frequency non-linear memory.

  37. 37.

    In this approach point particles are considered as independent matter degrees of freedom with a Grassmann regularization of the self-energies to get well defined world-lines (see also Ref. [183, 184]): they are not considered as point-like singularities of solutions of Einstein’s equations (the point of view of Ref. [179]). Solutions of this type have to be described with distributions and, as shown in Ref. [185], the most general class of such solutions under mathematical control includes singularities simulating matter shells, but not either strings or particles. See also Ref. [186].

  38. 38.

    In the electro-magnetic case the Grassmann regularization implies \(Q_i\, {{\dot{\eta }}}_i^r(\tau - |{\varvec{{\sigma }}}|) = Q_i\, {{\dot{\eta }}}_i(\tau )\) and equations of motion of the type \({\ddot{\eta }}^r_i(\tau ) = Q_i\, \ldots \) with \(Q^2_i = 0\). In the gravitational case the equations of motion are of the type \(\eta _i\, {\ddot{\eta }}^r_i(\tau ) = \eta _i\, \ldots \) with \(\eta ^2_i = 0\), but the Grassmann regularized retardation in Eq. (8.54) gives Eq. (8.59) only at the lowest order in \(\zeta \) and has contributions of every order \(O(\zeta ^k)\).

  39. 39.

    It is a bi-tensor, i.e. a scalar in both the points \({{\varvec{{\eta }}}}_i(\tau )\) and \({{\varvec{{\eta }}}}_j(\tau )\), defined in terms of the space-like geodesic connecting them in \(\varSigma _{\tau }\). See Eq. (3.13) of the third paper in Ref. [8890].

  40. 40.

    For binaries one assumes \({v\over c} \approx \sqrt{{{R_m}\over {l_c}}} << 1\), where \(l_c \approx |{\tilde{{\varvec{{r}}}}}|\) with \({\tilde{{\varvec{{r}}}}}(t)\) being the relative separation after the decoupling of the center of mass. Often one considers the case \(m_1 \approx m_2\). See chapter 4 of Ref. [95] for a review of the emission of GW’s from circular and elliptic Keplerian orbits and of the induced inspiral phase.

  41. 41.

    This is also the starting point of the effective one body description of the two-body problem of Refs. [181, 182].

References

  1. M. Bartelmann, The dark universe. Rev. Mod. Phys. 82, 331 (2010) (arXiv 0906.5036)

    Google Scholar 

  2. R. Bean, TASI 2009. Lectures on Cosmic Acceleration (arXiv 1003.4468).

    Google Scholar 

  3. UCLA 2007, The ABC’s of Distances (http://www.astro.ucla.edu/wright/distance.htm

  4. B.W. Carroll, D.A. Ostlie, An Introduction to Modern Astrophysics, 2nd edn. (Pearson Eduction Inc., New Jersey, 2007)

    Google Scholar 

  5. J. Kovalevski, I.I. Mueller, B. Kolaczek, Reference Frames in Astronomy and Geophysics (Kluwer, Dordrecht, 1989)

    Book  Google Scholar 

  6. O.J. Sovers, J.L. Fanselow, Astrometry and geodesy with radio interferometry: experiments, models, results. Rev. Mod. Phys. 70, 1393 (1998)

    Article  ADS  Google Scholar 

  7. C. Ma, E.F. Arias, T.M. Eubanks, A.L. Fey, A.M. Gontier, C.S. Jacobs, O.J. Sovers, B.A. Archinal, P. Charlot, The international celestial reference frame as realized by very long baseline interferometry. AJ 116, 516 (1998)

    Article  ADS  Google Scholar 

  8. K.J. Johnstone, Chr. de Vegt, Reference frames in astronomy. Annu. Rev. Astron. Astrophys. 37, 97 (1999)

    Article  ADS  Google Scholar 

  9. A. Fey, G. Gordon, C. Jacobs (eds.), The Second Realization of the International Celestial Reference Frame by Very Long Baseline Interferometry, 2009 IERS Technical, Notes 35.

    Google Scholar 

  10. L. Lusanna, Canonical Gravity and Relativistic Metrology: From Clock Synchronization to Dark Matter as a Relativistic Inertial Effect (arXiv 1108.3224)

    Google Scholar 

  11. M.Soffel, S.A. Klioner, G. Petit, P. Wolf, S.M. Kopeikin, P. Bretagnon, V.A. Brumberg, N. Capitaine, T. Damour, T. Fukushima, B. Guinot, T. Huang, L. Lindegren, C. Ma, K. Nordtvedt, J. Ries, P.K. Seidelmann, D. Vokroulicky’, C. Will, Ch. Xu, The IAU 2000 resolutions for astrometry, celestial mechanics and metrology in the relativistic rramework: explanatory supplement. Astron. J., 126, 2687–2706 (2003) (arXiv astro-ph/0303376).

    Google Scholar 

  12. D.D. McCarthy, G. Petit, IERS TN 32 (2004), Verlag des BKG. Kaplan G.H., The IAU Resolutions on Astronomical Reference Systems, Time Scales and Earth Rotation Models, IERS Conventions (2003). U.S.Naval Observatory circular No. 179 (2005) (arXiv astro-ph/0602086)

    Google Scholar 

  13. T.D. Moyer, Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation (John Wiley, New York, 2003)

    Book  Google Scholar 

  14. S. Jordan, The GAIA project: technique, performance and status. Astron. Nachr. 329, 875 (2008). doi:10.1002/asna.200811065

    Article  ADS  Google Scholar 

  15. R. Arnowitt, S. Deser, C.W. Misner, in The Dynamics of General Relativity, ch.7 of Gravitation: An Introduction to Current Research, ed. by L. Witten (Wiley, New York, 1962) (arXiv gr-qc/0405109)

    Google Scholar 

  16. P.A.M. Dirac, Lectures on Quantum Mechanics, Belfer Graduate School of Science, Monographs Series (Yeshiva University, New York, 1964)

    Google Scholar 

  17. M. Henneaux, C. Teitelboim, Quantization of Gauge Systems (Princeton University Press, Princeton, 1992)

    MATH  Google Scholar 

  18. S. Shanmugadhasan, Canonical formalism for degenerate Lagrangians. J. Math. Phys. 14, 677 (1973)

    Article  ADS  MATH  Google Scholar 

  19. L. Lusanna, The Shanmugadhasan canonical transformation, function groups and the second Noether Theorem. Int. J. Mod. Phys. A8, 4193 (1993)

    MathSciNet  ADS  Google Scholar 

  20. L. Lusanna, The Relevance of Canonical Transformations in Gauge Theories and General Relativity, Lecture Notes of “Seminario Interdisciplinare di Matematica” (Basilicata Univ.) 5, 125 (2006)

    Google Scholar 

  21. M. Chaichian, D. Louis Martinez, L. Lusanna, Dirac’s constrained systems: the classification of second-class constraints, Ann. Phys. (N.Y.) 232, 40 (1994)

    Google Scholar 

  22. B. Dittrich, Partial and complete observables for hamiltonian constrained systems. Gen. Rel. Grav. 39, 1891 (2007) (arXiv gr-qc/0411013)

    Google Scholar 

  23. B. Dittrich, Partial and complete observables for canonical general relativity. Gen. Rel. Grav. 23, 6155 (2006) (arXiv gr-qc/0507106)

    Google Scholar 

  24. T. Thiemann, Reduced phase space quantization and Dirac observables. Class. Quantum Grav. 23, 1163 (2006) (arXiv gr-qc/0411031)

    Google Scholar 

  25. J.M. Pons, D.C. Salisbury, K.A. Sundermeyer, Revisiting observables in generally covariant theories in the light of gauge fixing methods. Phys. Rev. D80, 084015 (2009) (0905.4564)

    Google Scholar 

  26. J.M. Pons, D.C. Salisbury, K.A. Sundermeyer, Observables in classical canonical gravity: folklore demystified (arXiv 1001.2726)

    Google Scholar 

  27. V. Moncrief, Space-time symmetries and linearization stability of the Einstein equations, I. J. Math. Phys. 16, 493 (1975)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. V. Moncrief, Decompositions of gravitational perturbations. J. Math. Phys. 16, 1556 (1975)

    Google Scholar 

  29. V. Moncrief, Space-time symmetries and linearization stability of the Einstein equations, II. J. Math. Phys. 17, 1893 (1976)

    Google Scholar 

  30. V. Moncrief, Invariant states and quantized gravitational perturbations. Phys. Rev. D18, 983 (1978)

    Google Scholar 

  31. Y. Choquet-Bruhat, A.E. Fischer, J.E. Marsden, Maximal hypersurfaces and positivity of mass, LXVII E. Fermi Summer School of Physics Isolated Gravitating Systems in General Relativity, ed. by J. Ehlers (North-Holland, Amsterdam, 1979)

    Google Scholar 

  32. A.E. Fisher, J.E. Marsden, The Initial Value Problem and the Dynamical Formulation of General Relativity, in General Relativity. An Einstein Centenary Survey, ed. by S.W. Hawking, W. Israel (Cambridge University Press, Cambridge, 1979)

    Google Scholar 

  33. A. Ashtekar, Asymptotic Structure of the Gravitational Field at Spatial Infinity, in General Relativity and Gravitation, vol 2, ed. by A. Held (Plenum, New York, 1980)

    Google Scholar 

  34. P.J. McCarthy, Asymptotically flat space-times and elementary particles. Phys. Rev. Lett. 29, 817 (1972)

    Article  ADS  Google Scholar 

  35. P.J. McCarthy, Structure of the Bondi-Metzner-Sachs group. J. Math. Phys. 13, 1837 (1972)

    Article  ADS  MATH  Google Scholar 

  36. R. Beig, Ó. Murchadha, The Poincaré Group as the Symmetry Group of Canonical General Relativity. Ann. Phys. (N.Y.) 174, 463 (1987)

    Google Scholar 

  37. L. Fatibene, M. Ferraris, M. Francaviglia, L. Lusanna, ADm pseudotensors, conserved quantities and covariant conservation laws in general relativity. Ann. Phys. Ann.Phys. 327, 1593 (2012) (arXiv 1007.4071)

    Google Scholar 

  38. J.L. Jaramillo, E. Gourgoulhon, Mass and Angular Momentum in General Relativity, in Mass and Motion in General Relativity, ed. by L. Blanchet, A. Spallicci, B. Whiting, Fundamental Theories in Physics, vol 162 (Springer, Berlin, 2011), p. 87 (arXiv 1001.5429)

    Google Scholar 

  39. L.B. Szabados, On the roots of Poincaré structure of asymptotically flat spacetimes. Class. Quant. Grav. 20, 2627 (2003) (arXiv gr-qc/0302033)

    Google Scholar 

  40. D. Christodoulou, S. Klainerman, The Global Nonlinear Stability of the Minkowski Space (Princeton University Press, Princeton, 1993)

    MATH  Google Scholar 

  41. L. Lusanna, The rest-frame instant form of metric gravity. Gen. Rel. Grav. 33, 1579 (2001) (arXiv gr-qc/0101048)

    Google Scholar 

  42. L. Lusanna, S. Russo, A new parametrization for tetrad gravity. Gen. Rel. Grav. 34, 189 (2002) (arXiv gr-qc/0102074)

    Google Scholar 

  43. R. DePietri, L. Lusanna, L. Martucci, S. Russo, Dirac’s observables for the rest-frame instant form of tetrad gravity in a completely fixed 3-orthogonal gauge. Gen. Rel. Grav. 34, 877 (2002) (arXiv gr-qc/0105084)

    Google Scholar 

  44. J. Agresti, R. De Pietri, L. Lusanna, L. Martucci, Hamiltonian linearization of the rest-frame instant form of tetrad gravity in a completely fixed 3-orthogonal gauge: a radiation gauge for background-independent gravitational waves in a post-Minkowskian Einstein spacetime. Gen. Rel. Grav. 36, 1055 (2004) (arXiv gr-qc/0302084)

    Google Scholar 

  45. C. Rovelli, Quantum Gravity (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  46. R. Geroch, Spinor structure of space-times in general relativity I. J. Math. Phys. 9, 1739 (1968)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. B. Mashhoon, The Hypothesis of Locality and its Limitations, in Relativity in Rotating Frames, ed. by G. Rizzi, M.L. Ruggiero (Kluwer, Dordrecht, 2003) (arXiv gr-qc/0303029)

    Google Scholar 

  48. B. Mashhoon, U. Muench, Length measurements in accelerated systems. Ann. Phys. (Leipzig) 11, 532 (2002)

    Google Scholar 

  49. D. Alba, L. Lusanna, Charged particles and the electro-magnetic field in non-inertial frames: I. Admissible 3+1 splittings of minkowski spacetime and the non-inertial rest frames. Int. J. Geom. Meth. Phys. 7, 33 (2010) (arXiv 0908.0213)

    Google Scholar 

  50. D. Alba, L. Lusanna, Charged particles and the electro-magnetic field in non-inertial frames: II. Applications: rotating frames, Sagnac effect, Faraday rotation, wrap-up effect. Int. J. Geom. Meth. Phys. 7, 185 (2010) (arXiv 0908.0215)

    Google Scholar 

  51. D. Alba, L. Lusanna, Generalized radar 4-coordinates and equal-time cauchy surfaces for arbitrary accelerated observers (2005). Int. J. Mod. Phys. D16, 1149 (2007) (arXiv gr-qc/0501090)

    Google Scholar 

  52. D. Bini, L. Lusanna, B. Mashhoon, Limitations of radar coordinates. Int. J. Mod. Phys. D14, 1 (2005) (arXiv gr-qc/0409052)

    Google Scholar 

  53. H. Bondi, Assumption and Myth in Physical Theory (Cambridge University Press, Cambridge, 1967)

    Google Scholar 

  54. R. D’Inverno, Introducing Einstein Relativity (Oxford University Press, Oxford, 1992)

    MATH  Google Scholar 

  55. L. Lusanna, The N- and 1-time classical descriptions of N-body relativistic kinematics and the electromagnetic interaction. Int. J. Mod. Phys. A12, 645 (1997)

    MathSciNet  ADS  Google Scholar 

  56. L. Lusanna, The Chrono-Geometrical Structure of Special and General Relativity: A Re-Visitation of Canonical Geometrodynamics. Lectures at 42nd Karpacz Winter School of Theoretical Physics: Current Mathematical Topics in Gravitation and Cosmology, Ladek, Poland, 6–11 Feb 2006. Int. J. Geom. Methods in Mod. Phys. 4, 79 (2007). (arXiv gr-qc/0604120)

    Google Scholar 

  57. L. Lusanna, The Chronogeometrical Structure of Special and General Relativity: towards a Background-Independent Description of the Gravitational Field and Elementary Particles (2004), in General Relativity Research Trends, ed. by A. Reiner, Horizon in World Physics, vol. 249 (Nova Science, New York, 2005) (arXiv gr-qc/0404122)

    Google Scholar 

  58. E. Schmutzer, J. Plebanski, Quantum mechanics in noninertial frames of reference. Fortschr. Phys. 25, 37 (1978)

    Article  MathSciNet  Google Scholar 

  59. D. Alba, L. Lusanna, M. Pauri, New Directions in Non-Relativistic and Relativistic Rotational and Multipole Kinematics for N-Body and Continuous Systems (2005), in Atomic and Molecular Clusters: New Research, ed. by Y.L. Ping (Nova Science, New York, 2006) (arXiv hep-th/0505005)

    Google Scholar 

  60. D. Alba, L. Lusanna, M. Pauri, Centers of mass and rotational kinematics for the relativistic N-body problem in the rest-frame instant form. J. Math. Phys. 43, 1677–1727 (2002) (arXiv hep-th/0102087)

    Google Scholar 

  61. D. Alba, L. Lusanna, M. Pauri, Multipolar expansions for closed and open systems of relativistic particles. J. Math. Phys. 46, 062505, 1–36 (2004) (arXiv hep-th/0402181)

    Google Scholar 

  62. H.W. Crater, L. Lusanna, The rest-frame Darwin potential from the Lienard-Wiechert solution in the radiation gauge. Ann. Phys. (N.Y.) 289, 87 (2001)

    Google Scholar 

  63. D. Alba, H.W. Crater, L. Lusanna, The semiclassical relativistic Darwin potential for spinning particles in the rest frame instant form: two-body bound states with spin 1/2 constituents. Int. J. Mod. Phys. A16, 3365–3478 (2001) (arXiv hep-th/0103109)

    Google Scholar 

  64. D. Alba, L. Lusanna, The Lienard-Wiechert potential of charged scalar particles and their relation to scalar electrodynamics in the rest-frame instant form. Int. J. Mod. Phys. A13, 2791 (1998) (arXiv hep-th/0708156)

    Google Scholar 

  65. D. Alba, H.W. Crater, L. Lusanna, Towards relativistic atom physics. I. The rest-frame instant form of dynamics and a canonical transformation for a system of charged particles plus the electro-magnetic field. Can. J. Phys. 88, 379 (2010) (arXiv 0806.2383)

    Google Scholar 

  66. D. Alba, H.W. Crater, L. Lusanna, Towards relativistic atom physics. II. Collective and relative relativistic variables for a system of charged particles plus the electro-magnetic field. Can. J. Phys. 88, 425 (2010) (arXiv 0811.0715)

    Google Scholar 

  67. D. Alba, H.W. Crater, L. Lusanna, Hamiltonian relativistic two-body problem: center of mass and orbit reconstruction. J. Phys. A40, 9585 (2007) (arXiv gr-qc/0610200)

    Google Scholar 

  68. D. Alba, H.W. Crater, L. Lusanna, On the relativistic micro-canonical ensemble and relativistic kinetic theory for N relativistic particles in inertial and non-inertial rest frames (arXiv 1202.4667)

    Google Scholar 

  69. D. Bini, L. Lusanna, Spin-rotation couplings: spinning test particles and Dirac fields. Gen. Rel. Grav. 40, 1145 (2008) (arXiv 0710.0791)

    Google Scholar 

  70. F. Bigazzi, L. Lusanna, Spinning particles on spacelike hypersurfaces and their rest-frame description. Int. J. Mod. Phys. A14, 1429 (1999) (arXiv hep-th/9807052)

    Google Scholar 

  71. F. Bigazzi, L. Lusanna, Dirac fields on spacelike hypersurfaces, their rest-frame description and Dirac observables. Int. J. Mod. Phys. A14, 1877 (1999) (arXiv hep-th/9807054)

    Google Scholar 

  72. D. Alba, L. Lusanna, The classical relativistic quark model in the rest-frame Wigner-covariant Coulomb gauge. Int. J. Mod. Phys. A13, 3275 (1998) (arXiv hep-th/9705156)

    Google Scholar 

  73. D. Alba, H.W. Crater, L. Lusanna, Massless particles plus matter in the rest-frame instant form of dynamics. J. Phys. A 43 405203 (arXiv 1005.5521)

    Google Scholar 

  74. D. Alba, H.W. Crater, L. Lusanna, The rest-frame instant form and Dirac observables for the open Nambu string. Eur. Phys. J. Plus 126, 26 (2011)(arXiv 1005.3659)

    Google Scholar 

  75. D. Alba, H.W. Crater, L. Lusanna, A relativistic version of the two-level atom in the rest-frame instant form of dynamics. J. Phys. A46, 195303 (2013) (arXiv 1107.1669)

    Google Scholar 

  76. D. Alba, H.W. Crater, L. Lusanna, Relativistic quantum mechanics and relativistic entanglement in the rest-frame instant form of dynamics. J. Math. Phys. 52, 062301 (2011) (arXiv 0907.1816)

    Google Scholar 

  77. D. Alba, L. Lusanna, Quantum mechanics in noninertial frames with a multitemporal quantization scheme: I. Relativistic particles. Int. J. Mod. Phys. A21, 2781 (2006) (arXiv hep-th/0502194)

    Google Scholar 

  78. D. Alba, Quantum mechanics in noninertial frames with a multitemporal quantization scheme: II. Nonrelativistic particles. Int. J. Mod. Phys. A21, 3917 (arXiv hep-th/0504060)

    Google Scholar 

  79. L. Lusanna, M. Pauri, Explaining Leibniz equivalence as difference of non-inertial appearances: dis-solution of the Hole argument and physical individuation of point-events. Hist. Phil. Mod. Phys. 37, 692 (2006) (arXiv gr-qc/0604087)

    Google Scholar 

  80. L. Lusanna, M. Pauri, The physical role of gravitational and gauge degrees of freedom in general relativity. I: Dynamical synchronization and generalized inertial effects; II: Dirac versus Bergmann observables and the objectivity of space-time. Gen. Rel. Grav. 38, 187 and 229 (2006) (arXiv gr-qc/0403081 and 0407007)

    Google Scholar 

  81. L. Lusanna, M. Pauri, in Dynamical Emergence of Instantaneous 3-Spaces in a Class of Models of General Relativity, ed. by A. van der Merwe. Relativity and the Dimensionality of the World (Springer Series Fundamental Theories of Physics) (to appear) (arXiv gr-qc/0611045)

    Google Scholar 

  82. D. Alba, L. Lusanna, The York map as a Shanmugadhasan canonical transformation in tetrad gravity and the role of non-inertial frames in the geometrical view of the gravitational field. Gen. Rel. Grav. 39, 2149 (2007) (arXiv gr-qc/0604086, v2)

    Google Scholar 

  83. J. Isenberg, J.E. Marsden, The York map is a canonical transformation. J. Geom. Phys. 1, 85 (1984)

    Google Scholar 

  84. I. Ciufolini, J.A. Wheeler, Gravitation and Inertia (Princeton University Press, Princeton, 1995)

    MATH  Google Scholar 

  85. J.W. York Jr., Kinematics and Dynamics of General Relativity, in Sources of Gravitational Radiation, ed. by L.L. Smarr, Battelle-Seattle Workshop 1978 (Cambridge University Press, Cambridge, 1979)

    Google Scholar 

  86. A. Quadir, J.A. Wheeler, York’s Cosmic Time versus Proper Time, in From SU(3) to Gravity, Y.Ne’eman;s festschrift, ed. by E. Gotsma, G. Tauber (Cambridge University Press, Cambridge, 1985)

    Google Scholar 

  87. R. Beig, The Classical Theory of Canonical General Relativity, in Canonical Gravity: from Classical to Quantum, Bad Honnef 1993, ed. by J. Ehlers, H. Friedrich, Lecture note in Physics 434 (Springer, Berlin, 1994)

    Google Scholar 

  88. D. Alba, L. Lusanna, The Einstein-Maxwell-Particle system in the York canonical basis of ADM tetrad gravity: I) The equations of motion in arbitrary Schwinger time gauges. Can. J. Phys. 90, 1017 (2012) (arXiv 0907.4087)

    Google Scholar 

  89. D. Alba, L. Lusanna, The Einstein-Maxwell-Particle system in the York canonical basis of ADM tetrad gravity: II) The weak field approximation in the 3-orthogonal gauges and Hamiltonian post-Minkowskian gravity: the N-body problem and gravitational waves with asymptotic background. Can. J. Phys. 90, 1077 (2012) (arXiv 1003.5143)

    Google Scholar 

  90. D. Alba, L. Lusanna, The Einstein-Maxwell-Particle system in the York canonical basis of ADM tetrad gravity: III) The post-Minkowskian N-body problem, its post-Newtonian limit in non-harmonic 3-orthogonal gauges and dark matter as an inertial effect. Can. J. Phys. 90, 1131 (2012) (arXiv 1009.1794)

    Google Scholar 

  91. D. Alba, L. Lusanna, Dust in the York Canonical Basis of ADM Tetrad Gravity: the Problem of Vorticity (arXiv 1106.0403)

    Google Scholar 

  92. L. Lusanna, D. Nowak-Szczepaniak, The rest-frame instant form of relativistic perfect fluids with equation of state \(\rho = \rho (\eta, s)\) and of nondissipative elastic materials. Int. J. Mod. Phys. A15, 4943 (2000)

    MathSciNet  ADS  Google Scholar 

  93. D. Alba, L. Lusanna, Generalized Eulerian coordinates for relativistic fluids: hamiltonian rest-frame instant form, relative variables, rotational kinematics. Int. J. Mod. Phys. A19, 3025 (2004) (arXiv hep-th/020903)

    Google Scholar 

  94. J.D. Brown, Action functionals for relativistic perfect fluids. Class. Quantum Grav. 10, 1579 (1993)

    Article  ADS  MATH  Google Scholar 

  95. M. Maggiore, Gravitational Waves (Oxford University Press, Oxford, 2008)

    Google Scholar 

  96. E.E. Flanagan, S.A. Hughes, The basics of gravitational wave theory. New J. Phys. 7, 204 (2005) (arXiv gr-qc/0501041)

    Google Scholar 

  97. E. Harrison, The redshift-distance and velocity-distance laws. Astrophys. J. 403, 28 (1993)

    Article  ADS  Google Scholar 

  98. T. Damour, N. Deruelle, General relativistic celestial mechanics of binary systems. I. The post-Newtonian motion. Ann. Inst.H.Poincare’ 43, 107 (1985)

    Google Scholar 

  99. T. Damour, N. Deruelle, General relativistic celestial mechanics of binary systems. II. The post-Newtonian timing formula. Ann. Inst.H.Poincare’ 44, 263 (1986)

    Google Scholar 

  100. E. Battaner, E. Florido, The rotation curve of spiral galaxies and its cosmological implications. Fund. Cosmic Phys. 21, 1 (2000) (arXiv astro-ph/0010475)

    Google Scholar 

  101. D.G. Banhatti, Disk galaxy rotation curves and dark matter distribution. Curr. Sci. 94, 986 (2008) (arXiv astro-ph/0703430)

    Google Scholar 

  102. W.J.G. de Blok, A. Bosma, High resolution rotation curves of low surface brightness galaxies. Astron. Astrophys. 385, 816 (2002) (arXiv astro-ph/0201276)

    Google Scholar 

  103. M.S. Longair, Galaxy Formation (Springer, Berlin, 2008)

    Google Scholar 

  104. M. Ross, Dark Matter: the Evidence from Astronomy, Astrophysics and Cosmology (arXiv 1001.0316)

    Google Scholar 

  105. K. Garret, G. Duda, Dark matter: a primer. Adv. Astron. 2011, 968283 (2011) (arXiv 1006.2483)

    Google Scholar 

  106. P. Schneider, J. Ehlers, E.E. Falco, Gravitational Lenses (Springer, Berlin, 1992)

    Google Scholar 

  107. M. Bartelmann, P. Schneider, Weak Gravitational Lensing (arXiv astro-ph/9912508)

    Google Scholar 

  108. B. Guinot, Application of general relativity to metrology. Metrologia 34, 261 (1997)

    Article  ADS  Google Scholar 

  109. S.G. Turyshev, V.T. Toth, The pioneer anomaly. Liv. Rev. Rel. 13, 4 (2010) (arXiv 1001.3686)

    Google Scholar 

  110. C.M. Moller, The Theory of Relativity (Oxford University Press, Oxford, 1957)

    Google Scholar 

  111. C.M. Moller, Sur la dinamique des syste’mes ayant un moment angulaire interne. Ann. Inst.H.Poincare’ 11, 251 (1949)

    Google Scholar 

  112. N. Stergioulas, Rotating stars in relativity. Liv. Rev. Rel. 6, 3 (2003)

    MathSciNet  Google Scholar 

  113. L. Lusanna, M. Materassi, A canonical decomposition in collective and relative variables of a Klein-Gordon field in the rest-frame Wigner-covariant instant form. Int. J. Mod. Phys. A15, 2821 (2000) (arXiv hep-th/9904202)

    Google Scholar 

  114. F. Bigazzi, L. Lusanna, Dirac fields on spacelike hypersurfaces, their rest-frame description and Dirac observables. Int. J. Mod. Phys. A14, 1877 (1999) (arXiv hep-th/9807054)

    Google Scholar 

  115. G. Longhi, L. Lusanna, Bound-state solutions, invariant scalar products and conserved currents for a class of two-body relativistic systems. Phys. Rev. D34, 3707 (1986)

    ADS  Google Scholar 

  116. W.G. Dixon, Extended Objects in General Relativity: their Description and Motion, in Isolated Gravitating Systems in General Relativity, ed. by J. Ehlers. Proc. Int. School of Phys. Enrico Fermi LXVII, (North-Holland, Amsterdam, 1979), p. 156

    Google Scholar 

  117. W.G. Dixon, Mathisson’s new mechanics: its aims and realisation. Acta Physica Polonica B Proc. Suppl. 1, 27 (2008)

    Google Scholar 

  118. W.G. Dixon, Description of extended bodies by multipole moments in special relativity. J. Math. Phys. 8, 1591 (1967)

    Google Scholar 

  119. C. Rovelli, Relational quantum mechanics. Int. J. Theor. Phys. 35, 1637 (1996) (quant-ph/9609002)

    Google Scholar 

  120. C. Rovelli, M. Smerlak, Relational EPR. Found. Phys. 37, 427 (2007) (quant-ph/0604064)

    Google Scholar 

  121. P.M.A. Dirac, Gauge invariant formulation of quantum electrodynamics. Can. J. Phys. 33, 650 (1955)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  122. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Interactions. Basic Processes and Applications (Wiley, New York, 1992)

    Google Scholar 

  123. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Photons and Atoms. Introduction to Quantum Electrodynamics (Wiley, New York, 1989)

    Google Scholar 

  124. G.C. Hegerfeldt, Remark on causality and particle localization. Phys. Rev. D10, 3320 (1974)

    ADS  Google Scholar 

  125. G.C. Hegerfeldt, Violation of causality in relativistic quantum theory? Phys. Rev. Lett. 54, 2395 (1985)

    Google Scholar 

  126. A. Einstein, B. Podolski, N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  127. H.R. Brown, Physical Relativity. Space-Time Structure from a Dynamical Perspective (Oxford University Press, Oxford, 2005)

    Google Scholar 

  128. J. Butterfield, G. Fleming, Strange Positions, in From Physics to Philosophy, ed. by J. Butterfield, C. Pagonis, (Cambridge University Press, Cambridge, 1999), pp. 108–165

    Google Scholar 

  129. L. Lusanna, Classical observables of gauge theories from the multitemporal approach. Contemp. Math. 132, 531 (1992)

    Article  MathSciNet  Google Scholar 

  130. L. Lusanna, From Relativistic Mechanics towards Green’s Functions: Multitemporal Dynamics. Proc. VII Seminar on Problems of High Energy Physics and Quantum Field Theory, Protvino 1984 (Protvino University Press, Protvino, 1984)

    Google Scholar 

  131. C.G. Torre, M. Varadarajan, Functional evolution of free quantum fields. Class. Quantum Grav. 16, 2651 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  132. C.G. Torre, M. Varadarajan, Quantum fields at any time. Phys. Rev. D58, 064007 (1998)

    Google Scholar 

  133. L. Cacciapuoti, C. Salomon, ACES: Mission Concept and Scientific Objective, 28/03/2007, ESA document, Estec (\({\text{ ACES }}\_{\text{ Science }}\_{\text{ v1 }}\_{\text{ printout.doc }}\))

    Google Scholar 

  134. L. Blanchet, C. Salomon, P. Teyssandier, P. Wolf, Relativistic theory for time and frequency transfer to order \(1/c^3\). Astron. Astrophys. 370, 320 (2000)

    Article  ADS  Google Scholar 

  135. L. Lusanna, Dynamical Emergence of 3-Space in General Relativity: Implications for the ACES Mission, in Proceedings of the 42th Rencontres de Moriond Gravitational Waves and Experimental Gravity, La Thuile, Italy, 11–18 March 2007

    Google Scholar 

  136. J. Stewart, Advanced General Relativity (Cambridge University Press, Cambridge, 1993)

    Google Scholar 

  137. R.M. Wald, General Relativity (Chicago University Press, Chicago, 1984)

    Book  MATH  Google Scholar 

  138. J.M.M. Senovilla, A Singularity Theorem based on Spatial Averages (arXiv gr-qc/0610127)

    Google Scholar 

  139. J.M.M. Senovilla, singularity theorems, their consequences. Gen. Rel. Grav. 30, 701 (1998)

    Google Scholar 

  140. H. van Elst, C. Uggla, General relativistic \(1+3\) orthonormal frame approach. Class. Quantum Grav. 14, 2673 (1997)

    Google Scholar 

  141. H. Stephani, General Relativity, 2nd edn. (Cambridge University Press, Cambridge, 1996)

    Google Scholar 

  142. R. Arnowitt, S. Deser, C.W. Misner, Wave zone in general relativity. Phys. Rev. 121, 1556 (1961)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  143. K. Thorne, in Gravitational Radiation, ed. by S. Hawking, W. Israel. Three Hundred Years of Gravitation (Cambridge University Press, Cambridge, 1987), pp. 330–458

    Google Scholar 

  144. K. Thorne, in The Theory of Gravitational Radiation: An Introductory Review, ed. by N. Deruelle, T. Piran. Gravitational Radiation (North-Holland, Amsterdam, 1983), p. 1

    Google Scholar 

  145. K. Thorne, Multipole expansions of gravitational radiation. Rev. Mod. Phys. 52, 299 (1980)

    Google Scholar 

  146. L. Blanchet, Gravitational radiation from post-Newtonian sources and inspiralling compact binaries. Living Rev. Rel. 9, 4 (2006)

    Google Scholar 

  147. L. Blanchet, Post-Newtonian Theory and the Two-Body Problem (arXiv 0907.3596)

    Google Scholar 

  148. T. Damour, Gravitational Radiation and the Motion of Compact Bodies, in Gravitational Radiation, ed. by N. Deruelle, T. Piran (North-Holland, Amsterdam, 1983), pp. 59–144

    Google Scholar 

  149. T. Damour, The Problem of Motion in Newtonian and Einsteinian Gravity, in Three Hundred Years of Gravitation, ed. by S. Hawking, W. Israel (Cambridge University Press, Cambridge, 1987), pp. 128–198

    Google Scholar 

  150. M.E. Pati, C.M. Will, Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations: foundations. Phys. Rev. D62, 124015 (2002)

    Google Scholar 

  151. M.E. Pati, C.M. Will, II. Two-body equations of motion to second post-Newtonian order and radiation reaction to 3.5 post-Newtonian order. Phys. Rev. D65, 104008 (2002)

    Google Scholar 

  152. C. Will, III. Radiaction reaction for binary systems with spinning bodies. Phys. Rev. D71, 084027 (2005)

    MathSciNet  ADS  Google Scholar 

  153. H. Wang, C. Will IV, Radiation reaction for binary systems with spin-spin coupling. Phys. Rev. D75, 064017 (2007)

    MathSciNet  ADS  Google Scholar 

  154. T. Mitchell, C. Will, V. Evidence for the strong equivalence principle in second post-Newtonian order. Phys. Rev. D75, 124025 (2007)

    Google Scholar 

  155. G. Schaefer, The gravitational quadrupole radiation-reaction force and the canonical formalism of ADM. Ann. Phys. (N.Y.) 161, 81 (1985)

    Google Scholar 

  156. G. Schaefer, The ADM Hamiltonian and the postlinear approximation. Gen. Rel. Grav. 18, 255 (1985)

    Google Scholar 

  157. T. Ledvinka, G. Schaefer, J. Bicak, Relativistic closed-form Hamiltonian for many-body gravitating systems in the post-Minkowskian approximation. Phys. Rev. Lett. 100, 251101 (2008) (arXiv 0807.0214)

    Google Scholar 

  158. Y. Mino, M. Sasaki, T. Tanaka, Gravitational radiation reaction to a particle motion. Phys. Rev. D55, 3457 (1997) (arXiv gr-qc/9606018)

    Google Scholar 

  159. T.C. Quinn, R.M. Wald, Phys. Rev. D56, 3381 (1997) (arXiv gr-qc/9610053)

    Google Scholar 

  160. S. Detweiler, B.F. Whiting, Self-force via a Green’s function decomposition. Phys. Rev. D67, 024025 (2003) (arXiv gr-qc/0202086)

    Google Scholar 

  161. R.M. Wald, Introduction to Gravitational Self-Force (arXiv 0907.0412)

    Google Scholar 

  162. S.E. Gralla, R.M. Wald, Derivation of Gravitational Self-Force, in Mass and its Motion, proceedings of the 2008 CNRS School in Orléans/France, ed. by L. Blanchet, A. Spallicci, B. Whiting (Springer, Berlin, 2011) (arXiv 0907.0414)

    Google Scholar 

  163. A. Pound, A New Derivation of the Gravitational Self-Force (2009) (arXiv 0907.5197)

    Google Scholar 

  164. B.F. Schutz, A First Course in General Relativity (Cambridge University Press, Cambridge, 1985)

    Google Scholar 

  165. I. Ciufolini, E.C. Pavlis, A confirmation of the general relativistic prediction of the Lense-Thirring effect. Nature 431, 958 (2004)

    Google Scholar 

  166. C.W.F. Everitt, B.W. Parkinson, Gravity Probe B Science Results-NASA Final Report, (http://einstein.stanford.edu/content/final-report/GPB-Final-NASA-Report-020509-web.pdf)

  167. S.M. Kopeikin, E.B. Fomalont, Gravitomagnetism, causality and aberration of gravity in the gravitational light-ray deflection experiments. Gen. Rel. Grav. 39, 1583 (2007) (arXiv gr-qc/0510077)

    Google Scholar 

  168. S.M. Kopeikin, E.B. Fomalont, Aberration and the fundamental speed of gravity in the Jovian deflection experiment. Found. Phys. 36, 1244 (2006) (arXiv astro-ph/0311063)

    Google Scholar 

  169. S.M. Kopeikin, V.V. Makarov, Gravitational bending of light by planetary multipoles and its measurement with microarcsecond astronomical interferometers. Phys. Rev. D75, 062002 (2007) (arXiv astro-ph/0611358)

    Google Scholar 

  170. S. Carlip, Model-dependence of Shapiro time delay and the "speed of gravity/speed of light" controversy. Class. Quantum Grav. 21, 3803 (2004) (arXiv gr-qc/0403060)

    Google Scholar 

  171. C. Will, Propagation speed of gravity and the relativistic time delay. Astrophys. J. 590, 683 (2003) (arXiv astro-ph/0301145)

    Google Scholar 

  172. L. Lindegren, D. Dravins, The fundamental definition of ’radial velocity’. Astron. Astrophys. 401, 1185 (2003) (arXiv astro-ph/0302522)

    Google Scholar 

  173. P. Teyssandier, C. Le Poncin-Lafitte, B. Linet, A universal tool for determining the time delay and the frequency shift of light: Synge’s world function. Astrophys. Space Sci. Libr. 349, 153 (2007) (arXiv 0711.0034)

    Google Scholar 

  174. P. Teyssandier, C. Le Poncin-Lafitte, General Post-Minkowskian expansion of time transfer functions. Class. Quantum Grav. 25, 145020 (2008) (arXiv 0803.0277)

    Google Scholar 

  175. M.H. Bruegmann, Light deflection in the postlinear gravitational filed of bounded pointlike masses. Phys. Rev. D72, 024012 (2005) (arXiv gr-qc/0501095)

    Google Scholar 

  176. M. Favata, Post-Newtonian Corrections to the Gravitational-Wave Memory for Quasi-Circular, Inspiralling Compact Binaries (2009) (arXiv 0812.0069)

    Google Scholar 

  177. J.L. Jaramillo, J.A.V. Kroon, E. Gourgoulhon, From geometry to numerics: interdisciplinary aspects in mathematical and numerical relativity. Class. Quantum Grav. 25, 093001 (2008)

    Article  ADS  Google Scholar 

  178. I. Hinder, The Current Status of Binary Black Hole Simulations in Numerical Relativity (2010) (arXiv 1001.5161)

    Google Scholar 

  179. L. Infeld, J. Plebanski, Motion and Relativity (Pergamon, Oxford, 1960)

    MATH  Google Scholar 

  180. J.L. Synge, Relativity: The General Theory (North Holland, Amsterdam, 1964)

    Google Scholar 

  181. T. Damour, A. Nagar, The Effective One Body Description of the Two-Body Problem (arXiv 0906.1769)

    Google Scholar 

  182. T. Damour, Introductory Lectures on the Effective One Body Formalism (arXiv 0802.4047)

    Google Scholar 

  183. E. Poisson, The motion of point particles in curved space-time. Living Rev. Rel. 7, 6(2004) (arXiv gr-qc/0306052)

    Google Scholar 

  184. E. Poisson, Constructing the Self-Force, in Mass and its Motion, Proceedings of the 2008 CNRS School in Orléans/France, ed. by L. Blanchet, A. Spallicci, B. Whiting (Springer, Berlin, 2011)

    Google Scholar 

  185. R. Geroch, J. Traschen, Strings and other distributional sources in general relativity. Phys. Rev. D36, 1017 (1987)

    MathSciNet  ADS  Google Scholar 

  186. R. Steinbauer, J.A. Vickers, The use of generalized functions and distributions in general relativity. Class. Quantum Grav. 23, R91 (2006) (arXiv gr-qc/0603078)

    Google Scholar 

  187. J. Ehlers, E. Rundolph, Dynamics of extended bodies in general relativity: center-of-mass description and quasi-rigidity. Gen. Rel. Grav. 8, 197 (1977)

    Article  ADS  MATH  Google Scholar 

  188. W. Beiglboeck, The center of mass in Einstein’s theory of gravitation. Commun. Math. Phys. 5, 106 (1967)

    Article  ADS  MATH  Google Scholar 

  189. R. Schattner, The center of mass in general relativity. Gen. Rel. Grav. 10, 377 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  190. R. Schattner, The uniqueness of the center of mass in general relativity. Gen. Rel. Grav. 10, 395 (1979)

    Google Scholar 

  191. J. Ehlers, R. Geroch, Equation of motion of small bodies in relativity. Ann. Phys. 309, 232 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  192. S. Kopeikin, I. Vlasov, Parametrized post-Newtonian theory of reference frames, multipolar expansions and equations of motion in the N-body problem. Phys. Rep. 400, 209 (2004) (arXiv gr-qc/0403068)

    Google Scholar 

  193. J. Steinhoff, D. Puetzfeld, Multipolar Equations of Motion for Extended Test Bodies in General Relativity (arXiv 0909.3756)

    Google Scholar 

  194. A. Barducci, R. Casalbuoni, L. Lusanna, Energy-momentum tensor of extended relativistic systems. Nuovo Cim. 54A, 340 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  195. G. Schaefer, Post-Newtonian Methods: Analytic Results on the Binary Problem, in Mass and Motion in General Relativity, Proceedings of the 2008 CNRS School in Orleans/France, ed. by L. Blanchet, A. Spallicci, B. Whiting (Springer, Berlin, 2011) (arXiv 0910.2857)

    Google Scholar 

  196. G. Schaefer, The gravitational quadrupole radiation-reaction force and the canonical formalism of ADM. Ann. Phys. (N.Y.) 161, 81 (1985)

    Google Scholar 

  197. G. Schaefer, The ADM Hamiltonian and the postlinear approximation. Gen. Rel. Grav. 18, 255 (1985)

    Google Scholar 

  198. C.M. Will, On the Unreasonable Effectiveness of the Post-Newtonian Approximation in Gravitational Physics (arXiv 1102.5192)

    Google Scholar 

  199. C. Moni Bidin, G. Carraro, G.A. Me’ndez, W.F. van Altena, No Evidence for a Dark Matter Disk within 4 kpc from the Galactic Plane (arXiv 1011.1289)

    Google Scholar 

  200. M. Milgrom, New Physics at Low Accelerations (MOND): An Alternative to Dark Matter (arXiv 0912.2678)

    Google Scholar 

  201. S. Capozziello, V.F. Cardone, A. Troisi, Low surface brightness galaxies rotation curves in the low energy limit of \(R^n\) gravity : no need for dark matter? Mon. Not. R. Astron. Soc. 375, 1423 (2007) (arXiv astro-ph/0603522)

    Google Scholar 

  202. J.L. Feng, Dark Matter Candidates from Particle Physics and Methods of Detection (arXiv 1003.0904)

    Google Scholar 

  203. F.I. Cooperstock, S. Tieu, General relativistic velocity: the alternative to dark matter. Mod. Phys. Lett. A23, 1745 (2008) (arXiv 0712.0019)

    Google Scholar 

  204. G.F.R. Ellis, H. van Elst, Cosmological Models, Cargese Lectures 1998, NATO Adv. Stud. Inst. Ser. C. Math. Phys. Sci. 541, 1 (1999) (arXiv gr-qc/9812046)

    Google Scholar 

  205. G.F.R. Ellis, Inhomogeneity Effects in Cosmology (arXiv 1103.2335)

    Google Scholar 

  206. C. Clarkson, G. Ellis, A. Faltenbacher, R. Maartens, O. Umeh, J.P. Uzan,(Mis-)Interpreting Supernovae Observations in a Lumpy Universe (arXiv 1109.2484)

    Google Scholar 

  207. T. Buchert, G.F.R. Ellis, The universe seen at different scales. Phys. Lett. A347, 38 (2005) (arXiv gr-qc?0506106)

    Google Scholar 

  208. R. Maartens, Is the Universe Homogeneous? (arXiv 1104.1300)

    Google Scholar 

  209. C.G. Tsagas, A. Challinor, R. Maartens, Relativistic cosmology and large-scale structure. Phys. Rep. 465, 61 (2008) (arXiv 0705.4397)

    Google Scholar 

  210. C. Clarkson, R. Maartens, Inhomogeneity and the foundations of concordance cosmology. Class. Quantum Grav. 27, 124008 (arXiv 1005.2165)

    Google Scholar 

  211. R. Durrer, What do we really Know about Dark Energy? (arXiv 1103.5331)

    Google Scholar 

  212. C. Bonvin, R. Durrer, What Galaxy Surveys Really Measure (arXiv 1105.5280)

    Google Scholar 

  213. K. Nakamura, Second-order gauge-invariant cosmological perturbation theory: current status. Adv. Astron. 2010, 576273 (2010) (arXiv 1001.2621)

    Google Scholar 

  214. W.B. Bonnor, A.H. Sulaiman, N. Tanimura, Szekeres’s space-times have no Killing vectors. Gen. Rel. Grav. 8, 549 (1977)

    Google Scholar 

  215. B.K. Berger, D.M. Eardley, D.W. Olson, Notes on the spacetimes of Szekeres. Phys. Rev. D16, 3086 (1977)

    MathSciNet  ADS  Google Scholar 

  216. A. Nwankwo A., M. Ishak, J. Thomson, Luminosity Distance and Redshift in the Szekeres Inhomogeneous Cosmological Models (arXiv 1005.2989)

    Google Scholar 

  217. J. Pleban’ski, A. Krasin’ski, An Introduction to General Relativity and Cosmology (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

  218. M.N. Celerier, Effects of Inhomogeneities on the Expansion of the Universe: a Challenge to Dark Energy? (arXiv 1203.2814)

    Google Scholar 

  219. T. Buchert, Dark energy from structure: a status report. Gen. Rel. Grav. 40, 467 (2008) (arXiv 0707.2153)

    Google Scholar 

  220. A. Wiegand, T. Buchert, Multiscale cosmology and structure-emerging dark energy: a plausibility analysis. Phys. Rev. D82, 023523 (2010) (arXiv 1002.3912)

    Google Scholar 

  221. J. Larena, Spatially averaged cosmology in an arbitrary coordinate system. Phys. Rev. D79, 084006 (2009) (arXiv 0902.3159)

    Google Scholar 

  222. R.J. van den Hoogen, Averaging Spacetime: Where do we go from here? (arXiv 1003.4020)

    Google Scholar 

  223. S. Räsänen, Backreaction: directions of progress. Class. Quantum Grav. 28, 164008 (2011) (arXiv 1102.0408)

    Google Scholar 

  224. T. Buchert, S. Räsänen, Backreaction in late-time cosmology. Ann. Rev. Nucl. Particle Sci. (invited review) (arXiv 1112.5335)

    Google Scholar 

  225. D.L. Wiltshire, What is Dust? Physical Foundations of the Averaging Problem in Cosmology (arXiv 1106.1693)

    Google Scholar 

  226. A. Ashtekar, New Perspectives in Canonical Gravity (Bibliopolis, Napoli, 1988)

    MATH  Google Scholar 

  227. M. Henneaux, J.E. Nelson, C. Schomblond, Derivation of Ashtekar variables from tetrad gravity. Phys. Rev. D39, 434 (1989)

    MathSciNet  ADS  Google Scholar 

  228. T. Thiemann, Modern Canonical Quantum General Relativity (Cambridge University Press, Cambridge, 2007)

    Book  MATH  Google Scholar 

  229. P. Dona’, S. Speziale, Introductory Lectures to Loop Quantum Gravity (arXiv 1007.0402)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Lusanna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Lusanna, L. (2013). From Clock Synchronization to Dark Matter as a Relativistic Inertial Effect. In: Bellucci, S. (eds) Black Objects in Supergravity. Springer Proceedings in Physics, vol 144. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00215-6_8

Download citation

Publish with us

Policies and ethics