Skip to main content

Black Hole Microstate Geometries from String Amplitudes

  • Conference paper
  • First Online:
Black Objects in Supergravity

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 144))

Abstract

In this talk we review recent calculations of the asymptotic supergravity fields sourced by bound states of D1 and D5-branes carrying travelling waves. We compute disk one-point functions for the massless closed string fields. At large distances from the branes, the effective open string coupling is small, even in the regime of parameters where the classical D1-D5-P black hole may be considered. The fields sourced by the branes differ from the black hole solution by various multipole moments, and have led to the construction of a new \(1/8\)-BPS ansatz in type IIB supergravity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This ansatz was later extended to a full non-linear supergravity ansatz in [30]. Solutions have been studied in [31].

References

  1. J.D. Bekenstein, Black holes and entropy. Phys. Rev. D7, 2333–2346 (1973)

    MathSciNet  ADS  Google Scholar 

  2. S.W. Hawking, Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  3. S.W. Hawking, Breakdown of predictability in gravitational collapse. Phys. Rev. D14, 2460–2473 (1976)

    MathSciNet  ADS  Google Scholar 

  4. A. Sen, Extremal black holes and elementary string states. Mod. Phys. Lett. A10, 2081–2094 (1995). arXiv:hep-th/9504147

    Google Scholar 

  5. A. Strominger, C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy. Phys. Lett. B379, 99–104 (1996). arXiv:hep-th/9601029

    Google Scholar 

  6. C.G. Callan, J.M. Maldacena, D-brane approach to black hole quantum mechanics. Nucl. Phys. B472, 591–610 (1996). arXiv:hep-th/9602043

    Google Scholar 

  7. S.D. Mathur, The information paradox: a pedagogical introduction. Class. Quant. Grav. 26, 224001 (2009). arXiv:0909.1038 [hep-th]

    Google Scholar 

  8. S.D. Mathur, The fuzzball proposal for black holes: an elementary review. Fortsch. Phys. 53, 793–827 (2005). arXiv:hep-th/0502050

    Google Scholar 

  9. S.D. Mathur, Fuzzballs and the information paradox: a summary and conjectures. (2008). arXiv:0810.4525 [hep-th]

    Google Scholar 

  10. I. Bena, N.P. Warner, Black holes, black rings and their microstates. Lect. Notes Phys. 755, 1–92 (2008). arXiv:hep-th/0701216

    Google Scholar 

  11. K. Skenderis, M. Taylor, The fuzzball proposal for black holes. Phys. Rept. 467, 117–171 (2008). arXiv:0804.0552 [hep-th]

    Google Scholar 

  12. V. Balasubramanian, J. de Boer, S. El-Showk, I. Messamah, Black Holes as Effective Geometries. Class. Quant. Grav. 25, 214004 (2008). arXiv:0811.0263 [hep-th]

    Google Scholar 

  13. B.D. Chowdhury, A. Virmani, Modave lectures on fuzzballs and emission from the D1-D5 system. (2010). arXiv:1001.1444 [hep-th]

    Google Scholar 

  14. I. Bena, C.-W. Wang, N.P. Warner, Mergers and typical black hole microstates. JHEP 11, 042 (2006). arXiv:hep-th/0608217

    Google Scholar 

  15. A. Sen, Two charge system revisited: small black holes or horizonless solutions?. (2009). arXiv:0908.3402 [hep-th]

    Google Scholar 

  16. A. Dabholkar, J.P. Gauntlett, J.A. Harvey, D. Waldram, Strings as solitons and black holes as strings. Nucl. Phys. B474, 85–121 (1996). arXiv:hep-th/9511053

    Google Scholar 

  17. C.G. Callan, J.M. Maldacena, A.W. Peet, Extremal black holes as fundamental strings. Nucl. Phys. B475, 645–678 (1996). arXiv:hep-th/9510134

    Google Scholar 

  18. I. Bena, N.P. Warner, One ring to rule them all...and in the darkness bind them? Adv. Theor. Math. Phys. 9, 667–701 (2005). arXiv:hep-th/0408106

    Google Scholar 

  19. W. Black, R. Russo, D. Turton, The supergravity fields for a D-brane with a travelling wave from string amplitudes. Phys. Lett. B694, 246–251 (2010). arXiv:1007.2856 [hep-th]

    Google Scholar 

  20. S. Giusto, R. Russo, D. Turton, New D1–D5-P geometries from string amplitudes. JHEP 11, 062 (2011). arXiv:1108.6331 [hep-th]

    Google Scholar 

  21. M.R. Garousi, R.C. Myers, Superstring scattering from D-branes. Nucl. Phys. B475, 193–224 (1996). arXiv:hep-th/9603194 [hep-th]

    Google Scholar 

  22. A. Hashimoto, I.R. Klebanov, Scattering of strings from D-branes., Nucl. Phys. Proc. Suppl. 55B, 118–133 (1997). arXiv:hep-th/9611214 [hep-th]

    Google Scholar 

  23. P. Di Vecchia et al., Classical p-branes from boundary state. Nucl. Phys. B507, 259–276 (1997). arXiv:hep-th/9707068

    Google Scholar 

  24. S. Giusto, J.F. Morales, R. Russo, D1D5 microstate geometries from string amplitudes. JHEP 03, 130 (2010). arXiv:0912.2270 [hep-th]

    Google Scholar 

  25. M.J. Duff, Quantum tree graphs and the Schwarzschild solution. Phys. Rev. D7, 2317–2326 (1973)

    ADS  Google Scholar 

  26. Y. Hikida, H. Takayanagi, T. Takayanagi, Boundary states for D-branes with traveling waves. JHEP 04, 032 (2003). arXiv:hep-th/0303214

    Google Scholar 

  27. J.D. Blum, Gravitational radiation from travelling waves on D-strings. Phys. Rev. D68, 086003 (2003). arXiv:hep-th/0304173

    Google Scholar 

  28. C.P. Bachas, M.R. Gaberdiel, World-sheet duality for D-branes with travelling waves. JHEP 03, 015 (2004). arXiv:hep-th/0310017

    Google Scholar 

  29. M. Billo et al., Classical gauge instantons from open strings. JHEP 02, 045 (2003). arXiv:hep-th/0211250

    Google Scholar 

  30. S. Giusto, R. Russo, Adding new hair to the 3-charge black ring. (2012). arXiv:1201.2585 [hep-th]

    Google Scholar 

  31. O. Vasilakis, Bubbling the newly grown black ring hair. (2012). arXiv:1202.1819 [hep-th]

    Google Scholar 

  32. S. Giusto, S.D. Mathur, Geometry of D1-D5-P bound states. Nucl. Phys. B729, 203–220 (2005). arXiv:hep-th/0409067

    Google Scholar 

Download references

Acknowledgments

I thank W. Black, S. Giusto, and R. Russo for collaboration on the research reviewed here and I thank V. Jejjala, S. D. Mathur, J. F. Morales, S. Ramgoolam, A. Sen and E. Witten for fruitful discussions. I would like to acknowledge the support of an STFC studentship at Queen Mary, University of London and of DOE grant DE-FG02-91ER-40690.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Turton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Turton, D. (2013). Black Hole Microstate Geometries from String Amplitudes. In: Bellucci, S. (eds) Black Objects in Supergravity. Springer Proceedings in Physics, vol 144. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00215-6_7

Download citation

Publish with us

Policies and ethics