Skip to main content

Non-extremal Black-Hole Solutions of \(\mathcal{N }=2,\;d=4,\;5\) Supergravity

  • Conference paper
  • First Online:
Black Objects in Supergravity

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 144))

  • 704 Accesses

Abstract

Black holes have been intensely studied in the framework of string theory for the last 20 years. They are described by classical solutions of the supergravity theories that describe effectively the low-energy dynamics of different string compactifications. Being solutions of theories with local supersymmetry one can distinguish among them the particular class of those that preserve some unbroken supersymmetries (called supersymmetric or, less precisely, BPS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See also [10] for a review.

  2. 2.

    By this we mean that the metric of the spatial part of its worldvolume is Euclidean. As we are going to see, the metric of the full worldvolume is not flat.

  3. 3.

    This metric has also been derived from the equations of motion in Refs. [27].

  4. 4.

    In higher dimensions \(\omega \) is not a length, hence the change in notation.

  5. 5.

    Not to be mistaken for the non-extremality parameter \(\omega \).

  6. 6.

    This is true for \(\omega \ne 0\). The near-horizon behavior for \(\omega =0\) is given by Eq. (4.46).

  7. 7.

    The same result can be obtained by reducing first the action Eq. (4.1) to \((d-p)=(\tilde{p}+4)\) dimensions in such a way that the action only contains the Einstein-Hilbert term, scalars and 1-forms and then by using the FGK formalism of Ref. [20] for \(d\)-dimensional black holes (\(p=0\)). See the Appendix in Ref. [19].

  8. 8.

    Only the supersymmetric attractors, that is, r the values of the scalars of supersymmetric black-brane solutions, are guaranteed to depend only on the charges. The general situation for extremal non-supersymmetric black branes is that the scalars on the horizon keep some dependence on their values at spatial infinity. This situation is sometimes referred to as the existence of a moduli space of attractors parametrized by some numbers whose physical meaning (i.e. their expressions in terms of the physical constants) is seldom given in the literature. These parameters are functions of the moduli, as shown explicitly in the \(\overline{\mathbb{CP }}^{n}\) model studied in [19].

    Of course, there are some moduli-independent non-supersymmetric attractors but it is important to realize that this is what happens in general.

  9. 9.

    In that reference the coordinate used was \(\tau =-\rho \).

  10. 10.

    It would be stressed that this a transformation that relates solutions, and not a coordinate transformation.

  11. 11.

    In the construction of the solution this is achieved by requiring the positivity of certain constants that appear in it, such as the mass or the entropy.

  12. 12.

    A related result valid for horizons of arbitrary topology has been recently found in [37].

  13. 13.

    We have chosen, for convenience, the normalization \(\alpha ^{2}=3/32\).

  14. 14.

    For more information on these theories see, for instance, Ref. [42], the review [43], and the original works [44, 45].

  15. 15.

    These results have been extended to theories with hypermultiplets and tensor multiplets in Refs. [40, 48, 49] but these only include regular black-hole solutions when the additional fields vanish and, therefore, we will not consider them here.

  16. 16.

    The change \(\rho =r^{-2}\) brings the metric to the standard form.

  17. 17.

    The change \(\rho =r^{-1}\) brings the metric to the standard form.

  18. 18.

    These are the supersymmetric solutions such that the vector constructed as a bilinear from its Killing spinor is timelike. In particular, it is a timelike Killing vector. The other possible class is the null class. The supersymmetric extremal black-hole solutions belong to the timelike class.

  19. 19.

    In the gauged theories there are asymptotically-\(AdS\) black holes [55] and also asymptotically-flat, regular black holes with non-Abelian hair [1416], but here we are not going to consider these cases.

  20. 20.

    The change \(\rho =r^{-1}\) brings the metric to the standard form.

  21. 21.

    Apart from the examples studied in Refs. [19, 20], the assumption is true in all the supersymmetric solutions of \(\mathcal N =2,\;d=4,5\) theories, for all matter couplings and gaugings.

  22. 22.

    A similar, more general, formalism that reduces to the H-FGK one for single, static, spherically-symmetric black holes of \(\mathcal N =2,\;d=4,5\) has been given in Refs. [17, 18, 21]. The \(\mathcal{N }=2,\;d=5\) string case has not been treated with this method.

  23. 23.

    This relation can be derived from the identities in Ref. [57].

  24. 24.

    Observe that we do not really need it, since it does not appear in the original FGK action anyway.

  25. 25.

    It has also been studied via the analogous method mentioned before in Ref. [59].

References

  1. A. Strominger, C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy. Phys. Lett. B379, 99–104 (1996). [arXiv: hep-th/9601029]

    Google Scholar 

  2. S. Ferrara, R. Kallosh, A. Strominger, \({\rm N}=2\) extremal black holes. Phys. Rev. D52, 5412–5416 (1995). [arXiv: hep-th/9508072]

    Google Scholar 

  3. A. Strominger, Macroscopic entropy of \({\rm N}=2\) extremal black holes. Phys. Lett. B383, 39–43 (1996). [arXiv: hep-th/9602111]

    Google Scholar 

  4. S. Ferrara, R. Kallosh, Supersymmetry and attractors. Phys. Rev. D54, 1514–1524 (1996). [arXiv: hep-th/9602136]

    Google Scholar 

  5. S. Ferrara, R. Kallosh, Universality of supersymmetric attractors. Phys. Rev. D54, 1525–1534 (1996). [arXiv: hep-th/9603090]

    Google Scholar 

  6. K. Behrndt, D. Lüst, W.A. Sabra, Stationary solutions of \({\rm N}=2\) supergravity. Nucl. Phys. B510, 264–288 (1998). [arXiv: hep-th/9705169]

    Google Scholar 

  7. G.L. Cardoso, B. de Wit, J. Käppeli, T. Mohaupt, Stationary BPS solutions in \({\rm N}=2\) supergravity with R**2 interactions. JHEP 0012, 019 (2000). [arXiv: hep-th/0009234]

    Google Scholar 

  8. F. Denef, Supergravity flows and D-brane stability. JHEP 0008, 050 (2000). [arXiv: hep-th/0005049]

    Article  MathSciNet  ADS  Google Scholar 

  9. P. Meessen, T. Ortín, The supersymmetric configurations of \({\rm N}=2\), \({\rm D}=4\) supergravity coupled to vector supermultiplets. Nucl. Phys. B749, 291–324 (2006). [arXiv: hep-th/0603099]

    Google Scholar 

  10. T. Mohaupt, Black hole entropy, special geometry and strings. Fortsch. Phys. 49, 3 (2001). [arXiv: hep-th/0007195]

    Google Scholar 

  11. J.P. Gauntlett, J.B. Gutowski, C.M. Hull, S. Pakis, H.S. Reall, All supersymmetric solutions of minimal supergravity in five dimensions. Class. Quant. Grav. 20, 4587 (2003). [arXiv: hep-th/0209114]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. J.P. Gauntlett, J.B. Gutowski, General concentric black rings. Phys. Rev. D 71, 045002 (2005). [arXiv: hep-th/0408122]

    Article  MathSciNet  ADS  Google Scholar 

  13. P. Meessen, T. Ortín, S. Vaulà, All the timelike supersymmetric solutions of all ungauged \({\rm d}=4\) supergravities. JHEP 1011, 072 (2010). [arXiv:1006.0239 [hep-th]]

    Google Scholar 

  14. M. Hübscher, P. Meessen, T. Ortín, S. Vaulà, Supersymmetric \({\rm N}=2\) Einstein-Yang-Mills monopoles and covariant attractors. Phys. Rev. D 78, 065031 (2008). [arXiv:0712.1530]

    Google Scholar 

  15. P. Meessen, Supersymmetric coloured/hairy black holes. Phys. Lett. B 665, 388 (2008). [arXiv:0803.0684 [hep-th]]

    Google Scholar 

  16. M. Hübscher, P. Meessen, T. Ortín, S. Vaulà, \({\rm N}=2\) Einstein-Yang-Mills’s BPS solutions. JHEP 0809, 099 (2008). [arXiv:0806.1477]

    Google Scholar 

  17. T. Mohaupt, K. Waite, Instantons, black holes and harmonic functions. JHEP 0910, 058 (2009). [arXiv:0906.3451]

    Google Scholar 

  18. T. Mohaupt, O. Vaughan, Non-extremal black holes, harmonic functions, and attractor equations, class. Quant. Grav. 27, 235008 (2010). [arXiv:1006.3439 [hep-th]]

    Google Scholar 

  19. P. Galli, T. Ortín, J. Perz, C.S. Shahbazi, Non-extremal black holes of \({\rm N}=2\), \({\rm d}=4\) supergravity. JHEP 1107, 041 (2011). [arXiv:1105.3311]

    Google Scholar 

  20. P. Meessen, T. Ortín, Non-extremal black holes of \({\rm N}=2\), \({\rm d}=5\) supergravity. Phys. Lett. B707, 178–183 (2012). [arXiv:1107.5454]

    Google Scholar 

  21. T. Mohaupt, O. Vaughan, The Hesse potential, the c-map and black hole solutions. [arXiv:1112.2876]

    Google Scholar 

  22. P. Meessen, T. Ortín, J. Perz and C.S. Shahbazi, H-FGK-formalism for black-hole solutions of \({\rm N}=2\), \({\rm d}=4\) and \({\rm d}=5\) supergravity, Phys. Lett. B709, 260 (2012). [arXiv:1112.3332]

    Google Scholar 

  23. A. de Antonio Martín, T. Ortín, C.S. Shahbazi, The FGK formalism for black p-branes in d dimensions. JHEP 1205, 045 (2012). [arXiv:1203.0260 [hep-th]]

    Google Scholar 

  24. P. Meessen, T. Ortín, J. Perz, C.S. Shahbazi, Black holes and black strings of \({\rm N}=2\), \({\rm d}=5\) supergravity in the H-FGK formalism. [arXiv:1204.0507 [hep-th]]

    Google Scholar 

  25. P. Galli, T. Ortín, J. Perz, C. S. Shahbazi, in preparation

    Google Scholar 

  26. S. Ferrara, G.W. Gibbons, R. Kallosh, Black holes and critical points in moduli space. Nucl. Phys. B500, 75–93 (1997). [arXiv: hep-th/ 9702103]

    Google Scholar 

  27. B. Janssen, P. Smyth, T. Van Riet, B. Vercnocke, A first-order formalism for timelike and spacelike brane solutions. JHEP 0804, 007 (2008). [arXiv:0712.2808 [hep-th]]

    Google Scholar 

  28. G.T. Horowitz, A. Strominger, Black strings and P-branes. Nucl. Phys. B 360, 197 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  29. T. Ortín, Gravity and Strings (Cambridge University Press, Cambridge Unversity, 2004)

    Book  MATH  Google Scholar 

  30. G.W. Gibbons, R. Kallosh, B. Kol, Moduli, scalar charges, and the first law of black hole thermodynamics. Phys. Rev. Lett. 77, 4992 (1996). [arXiv: hep-th/ 9607108]

    Article  ADS  Google Scholar 

  31. M. Cvetič, G. W. Gibbons, C.N. Pope, Universal area product formulae for rotating and charged black holes in four and higher dimensions. Phys. Rev. Lett. 106, 121301 (2011). [arXiv:1011.0008]

    Google Scholar 

  32. M. Cvetič, D. Youm, Entropy of nonextreme charged rotating black holes in string theory. Phys. Rev. D54, 2612 (1996). [arXiv: hep-th/ 9603147]

    ADS  Google Scholar 

  33. F. Larsen, A String model of black hole microstates. Phys. Rev. D56, 1005 (1997). [arXiv: hep-th/ 9702153]

    ADS  Google Scholar 

  34. M. Cvetič, F. Larsen, General rotating black holes in string theory: Grey body factors and event horizons. Phys. Rev. D56, 4994 (1997). [arXiv: hep-th/ 9705192]

    ADS  Google Scholar 

  35. M. Cvetič, F. Larsen, Grey body factors for rotating black holes in four-dimensions. Nucl. Phys. B506, 107 (1997). [arXiv: hep-th/ 9706071]

    Article  ADS  Google Scholar 

  36. M. Cvetič, F. Larsen, Greybody factors and charges in Kerr/CFT. JHEP 0909, 088 (2009). [arXiv:0908.1136]

    Google Scholar 

  37. A. Castro, M.J. Rodríguez, Universal properties and the first law of black hole inner mechanics. [arXiv:1204.1284]

    Google Scholar 

  38. M. Gunaydin, G. Sierra, P.K. Townsend, The Geometry of N\(\,=\,\)2 Maxwell-Einstein Supergravity and Jordan Algebras. Nucl. Phys. B242, 244 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  39. B. de Wit, F. Vanderseypen, A. Van Proeyen, Symmetry structure of special geometries. Nucl. Phys. B400, 463–524 (1993). [arXiv: hep-th/ 9210068]

    Google Scholar 

  40. J. Bellorín, P. Meessen, T. Ortín, All the supersymmetric solutions of \({\rm N}=1\), \({\rm d}=5\) ungauged supergravity. JHEP 0701, 020 (2007). [arXiv: hep-th/ 0610196]

    Article  ADS  Google Scholar 

  41. E. Bergshoeff, S. Cucu, T. de Wit, J. Gheerardyn, S. Vandoren, A. Van Proeyen, N\(\,=\,\)2 supergravity in five dimensions revisited. Class. Quant. Grav. 21, 3015 (2004). [arXiv: hep-th/ 0403045]

    Article  ADS  MATH  Google Scholar 

  42. L. Andrianopoli, M. Bertolini, A. Ceresole, R. D’Auria, S. Ferrara, P. Fré, T. Magri, N\(\,=\,\)2 supergravity and N\(\,=\,\)2 super Yang-Mills theory on general scalar manifolds: symplectic covariance, gaugings and the momentum map. J. Geom. Phys. 23, 111 (1997). [arXiv: hep-th/ 9605032]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. A. Van Proeyen, \({\rm N}=2\) supergravity in \({\rm d}=4, 5, 6\) and its matter couplings. Lectures given at the Institut Henri Poincaré, Paris, November 2000

    Google Scholar 

  44. B. de Wit, A. Van Proeyen, Potentials and symmetries of general gauged \({\rm N}=2\) supergravity—Yang-Mills models. Nucl. Phys. B 245, 89 (1984)

    Article  ADS  Google Scholar 

  45. B. de Wit, P.G. Lauwers, A. Van Proeyen, Lagrangians Of \({\rm N}=2\) supergravity—matter systems. Nucl. Phys. B 255, 569 (1985)

    Article  ADS  Google Scholar 

  46. K.P. Tod, All metrics admitting supercovariantly constant spinors. Phys. Lett. B121, 241–244 (1983)

    MathSciNet  ADS  Google Scholar 

  47. J.P. Gauntlett, S. Pakis, The geometry of \({\rm D}=11\) killing spinors. JHEP 0304, 039 (2003). [arXiv: hep-th/ 0212008]

    Google Scholar 

  48. J. Bellorín, T. Ortín, Characterization of all the supersymmetric solutions of gauged \({\rm N}=1\), \({\rm d}=5\) supergravity. JHEP 0708, 096 (2007). [arXiv:0705.2567]

    Google Scholar 

  49. J. Bellorín, Supersymmetric solutions of gauged five-dimensional supergravity with general matter couplings. Class. Quant. Grav. 26, 195012 (2009). [arXiv:0810.0527]

    Google Scholar 

  50. A.H. Chamseddine, W.A. Sabra, Calabi-Yau black holes and enhancement of supersymmetry in five-dimensions. Phys. Lett. B460, 63 (1999). [arXiv: hep-th/ 9903046]

    MathSciNet  ADS  Google Scholar 

  51. G.W. Gibbons, C.M. Hull, A bogomolny bound For general relativity and solitons In \({\rm N}=2\) supergravity. Phys. Lett. B 109, 190 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  52. M.M. Caldarelli, D. Klemm, All supersymmetric solutions of \({\rm N}=2\), \({\rm D}=4\) gauged supergravity. JHEP 0309, 019 (2003). [arXiv: hep-th/ 0307022]

    Article  MathSciNet  ADS  Google Scholar 

  53. M. Hübscher, P. Meessen, T. Ortín, Nucl. Phys. B759, 228–248 (2006). [arXiv: hep-th/ 0606281]

    Google Scholar 

  54. P. Meessen, T. Ortín, Supersymmetric solutions to gauged \({\rm N}=2\) \({\rm d}=4\) sugra: the full timelike shebang. Nucl. Phys. B 863, 65 (2012). [arXiv:1204.0493 [hep-th]]

    Google Scholar 

  55. S. L. Cacciatori, D. Klemm, Supersymmetric AdS(4) black holes and attractors. JHEP 1001, 085 (2010). [arXiv:0911.4926 [hep-th]]

    Google Scholar 

  56. J. Bellorín, P. Meessen, T. Ortín Supersymmetry, attractors and cosmic censorship. Nucl. Phys. B762, 229–255 (2007). [arXiv: hep-th/ 0606201]

    Google Scholar 

  57. A. Ceresole, R. D’Auria, S. Ferrara, The symplectic structure of \({\rm N}=2\) supergravity and its central extension. Nucl. Phys. Proc. Suppl. 46, 67 (1996). [arXiv: hep-th/ 9509160]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. P. Galli, K. Goldstein, S. Katmadas, J. Perz, First-order flows and stabilisation equations for non-BPS extremal black holes. JHEP 1106, 070 (2011). [arXiv:1012.4020]

    Google Scholar 

  59. D. Klemm, O. Vaughan, Nonextremal black holes in gauged supergravity and the real formulation of special geometry. [arXiv:1207.2679 [hep-th]]

    Google Scholar 

  60. T. Ortín, C.S. Shahbazi, The supersymmetric black holes of \({\rm N}=8\) supergravity. [arXiv:1206.3190 [hep-th]]

    Google Scholar 

Download references

Acknowledgments

The author would like to thank his collaborators in the work reviewed here: P. Galli, P. Meessen, J. Perz and C. S. Shahbazi, and the organizers of the BOSS2011 school and workshop. This work has been supported in part by the Spanish Ministry of Science and Education grant FPA2009-07692, the Comunidad de Madrid grant HEPHACOS S2009ESP-1473 and the Spanish Consolider-Ingenio 2010 program CPAN CSD2007-00042. The author wishes to thank M. M. Fernández for her permanent support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomás Ortín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Ortín, T. (2013). Non-extremal Black-Hole Solutions of \(\mathcal{N }=2,\;d=4,\;5\) Supergravity. In: Bellucci, S. (eds) Black Objects in Supergravity. Springer Proceedings in Physics, vol 144. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00215-6_4

Download citation

Publish with us

Policies and ethics