Skip to main content

Terrain Generalisation

  • Chapter
  • First Online:
Abstracting Geographic Information in a Data Rich World

Abstract

This chapter reviews recent development in terrain generalisation. We focus on issues of aesthetics and legibility in the application of cartographic generalisation. Generalisation methods are relevant to traditional terrain representations (spot heights, contours, hypsometric colours, shaded relief) and to grid and triangulated surface generalisation. First we consider issues related to relief representation at different scales. As generalisation requires knowledge about the terrain morphology, several approaches focusing on the classification of terrain features according to morphometric or topological criteria have been developed. Cartographic generalisation methods are reviewed with consideration given to conflicts between terrain representations and other object type data on the map. In the second part of this chapter, three case studies illustrating previous developments are presented. First, a generalisation method for hypsometric map production is described where important valleys and mountain ridges are accentuated to improve their representation. Second, a method selecting features represented by isobaths and answering specific constraints of nautical charts is presented. The third case study is a generalisation method which models the relationship between terrain and other objects such as buildings and rivers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baella B, Palomar-Vázquez J, Pardo-Pascual JE, Pla M (2007) Spot heights generalization: deriving the relief of the topographic database of Catalonia at 1:25,000 from the master database. In: Proceedings of the 11th ICA workshop on generalisation and multiple representation, Moscow, Russia, 2007

    Google Scholar 

  • Beucher B (1994) Watershed, hierarchical segmentation and waterfall algorithm. In: Proceedings mathematical morphology and its applications to image processing, pp 69–76

    Google Scholar 

  • Brassel K (1974) A model for automatic hill-shading. Cartography Geogr Inf Sci 1(1):15–27

    Article  Google Scholar 

  • Chaudhry O, Mackaness W (2008) Creating mountains out of mole hills: automatic identification of hills and ranges using morphometric analysis. Trans GIS 12(5):567–589

    Article  Google Scholar 

  • Chen J, Liu W, Li Z, Zhao R, Cheng T (2007) Detection of spatial conflicts between rivers and contours in digital map updating. Int J Geogr Inf Sci 21(10):1093–1114

    Article  Google Scholar 

  • Chen Y, Wilson JP, Zhu Q, Zhou Q (2012) Comparison of drainage-constrained methods for DEM generalization. Comput Geosci 48:41–49

    Article  Google Scholar 

  • Danovaro E, De Floriani L, Magillo P, Mesmoudi MM, Puppo E (2003) Morphology-driven simplification and multiresolution modeling of terrains. In: Hoel E, Rigaux P (eds) The 11th international symposium on advances in geographic information systems. ACM press, pp 63–70

    Google Scholar 

  • Danovaro E, De Floriani L, Magillo P, Vitali M (2010) Multiresolution morse triangulations. In: Proceedings of the 14th ACM symposium on solid and physical modeling, pp 183–188

    Google Scholar 

  • Deng Y (2007) New trends in digital terrain analysis: landform definition, representation, and classification. Prog Phys Geogr 31(4):405–419

    Article  Google Scholar 

  • Duchêne C, Ruas A, Cambier C (2012) The CartACom model: transforming cartographic features into communicating agents for cartographic generalisation. Int J Geogr Inf Sci 26(9):1533–1562

    Article  Google Scholar 

  • Dyken C, Dæhlen M, Sevaldrud T (2009) Simultaneous curve simplification. J Geogr Syst 11:273–289

    Article  Google Scholar 

  • Fei L, He J (2009) A three-dimensional Douglas–Peucker algorithm and its application to automated generalization of DEMs. Int J Geogr Inf Sci 23(6):703–718

    Article  Google Scholar 

  • Feng CC, Bittner T (2010) Ontology-based qualitative feature analysis: Bays as a case study. Trans GIS 14(4):547–568

    Article  Google Scholar 

  • Fisher P, Wood J, Cheng T (2004) Where is Helvellyn? Fuzziness of multi-scale landscape morphology. Trans Inst Brit Geogr 29(4):106–128

    Article  Google Scholar 

  • Frank A (1996) The prevalence of objects with sharp boundaries in GIS. In: Burrough A, Frank AU (eds) Geographic objects with indeterminate boundaries. Taylor and Francis, London, pp 29–40

    Google Scholar 

  • Gaffuri J (2007a) Outflow preservation of the hydrographic network on the relief in map generalisation. In: International cartographic conference, International Cartographic Association, Moscow

    Google Scholar 

  • Gaffuri J (2007b) Field deformation in an agent-based generalisation model: the GAEL model. In: GI-days 2007—young researchers forum 30, pp 1–24

    Google Scholar 

  • Gaffuri J (2008) Généralisation automatique pour la prise en compte de thèmes champs: le modèle GAEL. PhD thesis, Université Paris-Est

    Google Scholar 

  • Gaffuri J, Duchêne C, Ruas A (2008) Object-field relationships modelling in an agent-based generalisation model. In: Proceedings of the 12th ICA workshop on generalisation and multiple representation, jointly organised with EuroSDR commission on data specifications and the Dutch program RGI, Montpellier, France, 2008

    Google Scholar 

  • Gökgöz (2005) Generalization of contours using deviation angles and error bands. Cartographic J 42(2):145–156

    Google Scholar 

  • Guilbert (2013) Multi-level representation of terrain features on a contour map. Geoinformatica 17(2):301–324

    Google Scholar 

  • Guilbert E, Saux E (2008) Cartographic generalisation of lines based on a B-spline snake model. Int J Geogr Inf Sci 22(8):847–870

    Article  Google Scholar 

  • Guilbert E, Zhang X (2012) Generalisation of submarine features on nautical charts. In: ISPRS annals of photogrammetry, remote sensing and spatial information sciences vol I-2, pp 13–18

    Google Scholar 

  • Harrie L, Weibel R (2007) Modelling the overall process of generalisation. In: Generalisation of geographic information: cartographic modelling and applications. Elsevier, Oxford

    Google Scholar 

  • Horn BKP (1982) Hill shading and the reflectance map. Geo-Processing 2:65–144

    Google Scholar 

  • Horn W (1945) Das Generalisieren von Höhenlinien für geographische Karten (Generalisation of contour lines for geographic maps). Petermanns Geogr Mitt 91(1–3):38–46

    Google Scholar 

  • Imhof (1982) Cartographic Relief Presentation. Walter de Gruyter & Co, Berlin

    Google Scholar 

  • Irigoyen J, Martin M, Rodriguez J (2009) A smoothing algorithm for contour lines by means of triangulation. Cartographic J 46(3):262–267

    Article  Google Scholar 

  • Jenny B (2001) An interactive approach to analytical relief shading. Cartographica 38(1–2):67–75

    Article  Google Scholar 

  • Jenny B, Jenny H, Hurni L (2011) Terrain generalization with multi-scale pyramids constrained by curvature. Cartography Geogr Inf Sci 38(1):110–116

    Article  Google Scholar 

  • João E (1998) Causes and consequences of map generalisation. Taylor and Francis, London

    Google Scholar 

  • Jordan G (2007) Adaptive smoothing of valleys in DEMs using TIN interpolation from ridgeline elevations: an application to morphotectonic aspect analysis. Comput Geosci 33:573–585

    Article  Google Scholar 

  • Kennelly PJ (2008) Terrain maps displaying hill-shading with curvature. Geomorphology 102(3):567–577

    Article  Google Scholar 

  • Kennelly PJ, Stewart AJ (2006) A uniform sky illumination model to enhance shading of terrain and urban areas. Cartography Geogr Inf Sci 33(1):21–36

    Article  Google Scholar 

  • Kweon IS, Kanade T (1994) Extracting topographic terrain features from elevation maps. CVGIP: Image Underst 59(2):171–182

    Google Scholar 

  • Leonowicz AM, Jenny B (2011) Generalizing digital elevation models for small scale hypsometric tinting. In: Proceedings of the 25th international cartographic conference ICC, Paris, 2011

    Google Scholar 

  • Leonowicz AM, Jenny B, Hurni L (2009) Automatic generation of hypsometric layers for small-scale maps. Comput Geosci 35:2074–2083

    Article  Google Scholar 

  • Leonowicz AM, Jenny B, Hurni L (2010a) Automated reduction of visual complexity in small-scale relief shading. Cartographica: Int J Geogr Inf Geovisualization 45(1):64–74

    Google Scholar 

  • Leonowicz AM, Jenny B, Hurni L (2010b) Terrain sculptor: generalizing terrain models for relief shading. Cartographic Perspect 67:51–60

    Google Scholar 

  • Li Z, Openshaw S (1993) A natural principle for objective generalization of digital map data. Cartographic Geogr Inf Sci 20(1):19–29

    Article  Google Scholar 

  • Loisios D, Tzelepis N, Nakos B (2007) A methodology for creating analytical hill-shading by combining different lighting directions. In: Proceedings of 23rd international cartographic conference, Moscow, 2007

    Google Scholar 

  • Lopes J, Catalão J, Ruas A (2011) Contour line generalization by means of artificial intelligence techniques. In: Proceedings of the 25th international cartographic conference, Paris, 2011

    Google Scholar 

  • Mackaness W, Steven M (2006) An algorithm for localised contour removal over steep terrain. Cartographic J 43(2):144–156

    Article  Google Scholar 

  • Matuk K, Gold C, Li Z (2006) Skeleton based contour line generalization. In: Riedl A, Kainz W, Elmes GA (eds) Progress in spatial data handling. Springer, Berlin, pp 643–658

    Google Scholar 

  • NOAA (1997) Nautical chart user’s manual. National Oceanic and Atmospheric Administration, U.S. Department of Commerce

    Google Scholar 

  • O’Callaghan JF, Mark DM (1984) The extraction of drainage networks from digital elevation data, computer vision. Graphics Image Proc 28(3):323–344

    Article  Google Scholar 

  • Palomar-Vázquez J, Pardo-Pascual J (2008) Automated spot heights generalisation in trail maps. Int J Geogr Inf Sci 22(1):91–110

    Article  Google Scholar 

  • Pannekoek AJ (1962) Generalization of coastlines and contours. Int Yearb Cartography 2:55–75

    Google Scholar 

  • Patterson T, Jenny B (2011) The development and rationale of cross-blended hypsometric tints. Cartographic Perspect 69:31–45

    Google Scholar 

  • Peters R (2012) A Voronoi- and surface-based approach for the automatic generation of depth-contours for hydrographic charts. Master’s thesis, TU Delft

    Google Scholar 

  • Podobnikar T (2012) Multidirectional visibility index for analytical shading enhancement. Cartographic J 49(3):195–207

    Article  Google Scholar 

  • Rana S (ed) (2004) Topological data structures for surfaces. An introduction to geographical information science. Wiley, New York

    Google Scholar 

  • Ruas A, Duchêne C (2007) A prototype generalisation system based on the multi-agent system paradigm. In: Generalisation of geographic information: cartographic modelling and applications. Elsevier, Oxford

    Google Scholar 

  • Saux E (2003) B-spline functions and wavelets for cartographic line generalization. Cartography Geogr Inf Sci 30:33–50

    Article  Google Scholar 

  • Smith B, Mark DM (2003) Do mountains exist? Towards an ontology of landforms. Environ Plann B: Plann Des 30(3):411–427

    Article  Google Scholar 

  • Spiess E (eds) (2008) Schweizer Weltatlas (Swiss World Atlas). Konferenz der Kantonalen Erziehungsdirektoren, Zürich

    Google Scholar 

  • Straumann RK, Purves RS (2011) Computation and elicitation of valleyness. Spat Cogn Comput 11(2):178–204

    Google Scholar 

  • Takahashi S (2004) Algorithms for extracting surface topology from digital elevation models. In: Rana S (eds) Topological data structures for surfaces. An introduction to geographical information science. Wiley, New York, pp 31–51

    Google Scholar 

  • Weibel R (1992) Models and experiments for adaptive computer-assisted terrain generalization. Cartography Geogr Inf Syst 19(3):133–153

    Article  Google Scholar 

  • Wood J (1996) The geomorphological characterisation of digital elevation models. Unpublished PhD thesis, University of Leicester

    Google Scholar 

  • Yoeli P (1966) Analytical hill shading and density. Surveying Mapp 26(2):253–259

    Google Scholar 

  • Zhang X, Guilbert E (2011) A multi-agent system approach for feature-driven generalization of isobathymetric line. In: Ruas A (eds) Advances in cartography and GIScience. Lecture notes in geoinformation and cartography. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Guilbert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Guilbert, E., Gaffuri, J., Jenny, B. (2014). Terrain Generalisation. In: Burghardt, D., Duchêne, C., Mackaness, W. (eds) Abstracting Geographic Information in a Data Rich World. Lecture Notes in Geoinformation and Cartography(). Springer, Cham. https://doi.org/10.1007/978-3-319-00203-3_8

Download citation

Publish with us

Policies and ethics