Skip to main content

The Strong Dodecahedral Conjecture and Fejes Tóth’s Conjecture on Sphere Packings with Kissing Number Twelve

  • Chapter
  • First Online:
Discrete Geometry and Optimization

Part of the book series: Fields Institute Communications ((FIC,volume 69))

Abstract

This article sketches the proofs of two theorems about sphere packings in Euclidean 3-space. The first is K. Bezdek’s strong dodecahedral conjecture: the surface area of every bounded Voronoi cell in a packing of balls of radius 1 is at least that of a regular dodecahedron of inradius 1. The second theorem is L. Fejes Tóth’s conjecture on sphere packings with kissing number twelve, which asserts that in 3-space, any packing of congruent balls such that each ball is touched by 12 others consists of hexagonal layers. Both proofs are computer assisted. Complete proofs of these theorems appear in Hales TC (Dense sphere packings: a blueprint for formal proofs. London mathematical society lecture note series, vol 400. Cambridge University Press, Cambridge/New York, 2012; A proof of Fejes Tóth’s conjecture on sphere packings with kissing number twelve. arXiv:1209.6043, 2012).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There are about 25,000 graphs that arise in the L 12 classification and only 8 graphs that arise in the contact graph. Because of the vast difference in complexity of these two classification problems, our discussion will focus on the L 12 classification.

  2. 2.

    About 500 inequalities occur.

References

  1. Bachoc, C., Vallentin, F.: New upper bounds for kissing numbers from semidefinite programming. J. Am. Math. Soc. 21, 909–924 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bezdek, K.: On a stronger form of Rogers’ lemma and the minimum surface area of Voronoi cells in unit ball packings. J. Reine Angew. Math. 518, 131–143 (2000)

    MathSciNet  MATH  Google Scholar 

  3. Fejes Tóth, L.: über die dichteste Kugellagerung. Mathematische Zeitschrift 48, 676–684 (1943)

    Article  MathSciNet  Google Scholar 

  4. Fejes Tóth, L.: Remarks on a theorem of R.M. Robinson. Studia Scientiarum Hungarica 4, 441–445 (1969)

    MATH  Google Scholar 

  5. Fejes Tóth, L.: Lagerungen in der Ebene auf der Kugel und im Raum, 2nd edn. Springer, Berlin/New York (1972)

    Book  MATH  Google Scholar 

  6. Fejes Tóth, L.: Research problems. Periodica Mathematica Hungarica 29, 89–91 (1989)

    Article  Google Scholar 

  7. Hales, TC.: Linear programs for the Kepler conjecture. In: Fukuda, K., van der Hoeven, J., Joswig, M., Takayama, N. (eds.) Mathematical Software – ICMS 2010, Springer, Berlin/New York (2010)

    Google Scholar 

  8. Hales, T.C.: Dense sphere packings: a blueprint for formal proofs. London Mathematical Society Lecture Note Series, vol. 400. Cambridge University Press, Cambridge/New York (2012)

    Google Scholar 

  9. Hales, T.C.: A proof of Fejes Tóth’s conjecture on sphere packings with kissing number twelve. arXiv:1209.6043 (2012)

    Google Scholar 

  10. Hales, TC., Ferguson, S.P.: The Kepler conjecture. Discret. Comput. Geom. 36(1), 1–269 (2006)

    Article  MathSciNet  Google Scholar 

  11. Hales, T.C., McLaughlin, S.: A proof of the dodecahedral conjecture. J. AMS 23, 299–344 (2010). http://arxiv.org/abs/math/9811079

    Google Scholar 

  12. Marchal, C.: Study of the Kepler’s conjecture: the problem of the closest packing. Mathematische Zeitschrift 267, 737–765 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nipkow, T., Bauer, G., Schultz, P.: Flyspeck I: tame graphs. In: Furbach, U., Shankar, N. (eds.) International Joint Conference on Automated Reasoning, Seattle. Lecture Notes in Computer Science, vol. 4130, pp. 21–35. Springer (2006)

    Google Scholar 

  14. Obua, S.: Flyspeck II: the basic linear programs. Ph.D. thesis, Technische Universität München (2008)

    Google Scholar 

  15. Rogers, C.A.: The packing of equal spheres. J. Lond. Math. Soc. 3/8, 609–620 (1958)

    Google Scholar 

  16. Solovyev, A., Hales, T.C.: Efficient formal verification of bounds of linear programs. LNCS, vol. 6824, pp. 123–132. Springer, Berlin (2011)

    Google Scholar 

Download references

Acknowledgements

Research supported by NSF grant 0804189 and the Benter Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas C. Hales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hales, T.C. (2013). The Strong Dodecahedral Conjecture and Fejes Tóth’s Conjecture on Sphere Packings with Kissing Number Twelve. In: Bezdek, K., Deza, A., Ye, Y. (eds) Discrete Geometry and Optimization. Fields Institute Communications, vol 69. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00200-2_8

Download citation

Publish with us

Policies and ethics