Skip to main content

Conditions for Correct Sensor Network Localization Using SDP Relaxation

  • Chapter
  • First Online:
Discrete Geometry and Optimization

Part of the book series: Fields Institute Communications ((FIC,volume 69))

Abstract

A Semidefinite Programming (SDP) relaxation is an effective computational method to solve a Sensor Network Localization problem, which attempts to determine the locations of a group of sensors given the distances between some of them. In this paper, we analyze and determine new sufficient conditions and formulations that guarantee that the SDP relaxation is exact, i.e., gives the correct solution. These conditions can be useful for designing sensor networks and managing connectivities in practice. Our main contribution is threefold: First, we present the first non-asymptotic bound on the connectivity (or radio) range requirement of randomly distributed sensors in order to ensure the network is uniquely localizable with high probability. Determining this range is a key component in the design of sensor networks, and we provide a result that leads to a correct localization of each sensor, for any number of sensors. Second, we introduce a new class of graphs that can always be correctly localized by an SDP relaxation. Specifically, we show that adding a simple objective function to the SDP relaxation model will ensure that the solution is correct when applied to a triangulation graph. Since triangulation graphs are very sparse, this is informationally efficient, requiring an almost minimal amount of distance information. Finally, we analyze a number of objective functions for the SDP relaxation to solve the localization problem for a general graph.

Research supported in part by AFOSR Grant FA9550-12-1-0396.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alfakih, A.Y.: On the universal rigidity of generic bar frameworks. Contrib. Discrete Math. 5(3), 7–17 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Alfakih, A.Y., Khandani, A., Wolkowicz, H.: Solving euclidean distance matrix completion problems via semidefinite programming. Comput. Optim. Appl. 12, 13–30 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Angluin, D., Aspnes, J., Chan, M., Fischer, M.J., Jiang, H., Peralta, R.: Stably computable properties of network graphs. In: Prasanna, V.K., Iyengar, S., Spirakis, P., Welsh, M. (eds.) Proceedings of the First IEEE International Conference Distributed Computing in Sensor Systems, DCOSS 2005, Marina del Rey, CA, USE, June/July, 2005. Lecture Notes in Computer Science, vol. 3560, pp. 63–74. Springer (2005)

    Google Scholar 

  4. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta R.: Computation in networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253 (2006)

    Article  MATH  Google Scholar 

  5. Araújo, F., Rodrigues, L.: Fast localized delaunay triangulation. In: Higashino, T. (ed.) Principles of Distributed Systems, vol. 3544, pp. 81–93. Springer, Berlin/Heidelberg (2005)

    Chapter  Google Scholar 

  6. Aspnes, J., Eren, T., Goldenberg, D.K., Morse, A.S., Whiteley, W., Yang, Y.R., Anderson, B.D.O., Belhumeur, P.N.: A theory of network localization. IEEE Trans. Mob. Comput. 5(12), 1663–1678, (2006)

    Article  Google Scholar 

  7. Aspnes, J., Goldenberg, D., Yang, Y.R.: On the computational complexity of sensor network localization. In: First International Workshop on Algorithmic Aspects of Wireless Sensor Networks. Lecture Notes in Computer Science, vol. 3121 pp. 32–44. Springer (2004)

    Google Scholar 

  8. Badoiu, M., Demaine, E.D., Hajiaghayi, M., Indyk, P.: Low-dimensional embedding with extra information. Discrete Comput. Geom. 36(4), 609–632 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Belk M., Connelly, R.: Realizability of graphs. In: Discrete and Computational Geometry, Springer-Verlag, vol. 37, pp. 7125–7137 (2007)

    MathSciNet  Google Scholar 

  10. Biswas, P., Lian, T., Wang, T., Ye, Y.: Semidefinite programming based algorithms for sensor network localization. In: IPSN, ACM Transactions on Sensor Networks (TOSN), Berkeley, pp 46–54 (2004).

    Google Scholar 

  11. Biswas P., Ye, Y.: Semidefinite programming for ad hoc wireless network localization. In: IPSN, Berkeley, pp. 46–54 (2004)

    Google Scholar 

  12. Bruck, J., Gao, J., Jiang, A.: Localization and routing in sensor networks by local angle information. In: MobiHoc, the 6th ACM international symposium on Mobile ad hoc networking and computing, pp. 181–192. (2005)

    Google Scholar 

  13. Bulusu, N., Heidemann, J., Estrin, D.: Gps-less low-cost outdoor localization for very small devices. IEEE Pers. Commun. 7(5), 28–34 (2000)

    Article  Google Scholar 

  14. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete Math. 86(1–3), 165–177 (1991)

    Article  MathSciNet  Google Scholar 

  15. Connelly, R.: Generic global rigidity. Discrete Comput. Geom. 33(4), 549–563 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Crippen G.M., Havel, T.F.: Distance geometry and molecular conformation. In: Chemometrics Series, Research Studies Press Ltd., Taunton, Somerset, England, volume 15, 1988.

    Google Scholar 

  17. Doherty, L., Pister, K.S.J., El Ghaoui, L.: Convex position estimation in wireless sensor networks. In: IEEE INFOCOM, Anchorge, vol. 3, pp. 1655–1663 (2001)

    Google Scholar 

  18. Eren, T., Goldenber, E.K., Whiteley, W., Yang, Y.R.: Rigidity, computation, and randomization in network localization. In: IEEE INFOCOM, Hong Kong, vol. 4, pp. 2673–2684 (2004)

    Google Scholar 

  19. Gortler, S.J., Healy, A.D., Thurston, D.P: Characterizing generic global rigidity. Am. J. Math. vol. 4 pp. 897–939 (2010)

    Article  MathSciNet  Google Scholar 

  20. Hendrickson, B.: Conditions for unique graph realizations. SIAM J. Comput. 21(1), 65–84 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gao, J., Bruck, J., Jiang, A.A.: Localization and routing in sensor networks by local angle information. ACM Trans. Sens. Networks 5(1), 181–192 (2009)

    Google Scholar 

  22. Jackson B., Jordan, T.: Connected rigidity matroids and unique realizations of graphs. J. Comb. Theory Ser. B 94(1), 1–29 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Javanmard, A., Montanari, A.:Localization from incomplete noisy distance measurements. (2011). http://arxiv.org/abs/1103.1417v3

  24. Krislock, N., Wolkowicz, H.: Explicit sensor network localization using semidefinite representations and clique reductions. SIAM J. Optim. 20(5), 2679–2708 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, X.: Wireless Ad Hoc and Sensor Networks: Theory and Applications. Cambridge University Press, New York (2008)

    Book  Google Scholar 

  26. Li, X.Y., Calinescu, G., Wan, P.J., Wang, Y.: Localized delaunay triangulation with application in ad hoc wireless networks. IEEE Transaction on Parallel and Distributed Systems, 14(10), 1035–1047 (2003)

    Article  Google Scholar 

  27. Priyantah, N.B., Balakrishnana, H., Demaine, E.D., Teller, S.: Mobile-assisted localization in wireless sensor networks. In: IEEE INFOCOM, Miami, vol. 1, pp. 172–183 (2005)

    Google Scholar 

  28. Recht, B., Fazel, M, Parrilo, P.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Savvides, A., Han, C.C., Strivastava, M.B., Dynamic fine-grained localization in ad-hoc networks of sensors. In: MobiCom, Rome, pp. 166–179 (2001)

    Google Scholar 

  30. So, A.M.C., Ye, Y.: Theory of semidefinite programming for sensor network localization. In: Symposium on Discrete Algorithms, Mathematical Programming, Vancouver, Springer-verlag, 109(2–3), 367–384 (2007)

    MathSciNet  MATH  Google Scholar 

  31. So, A.M.C., Ye, Y.: A semidefinite programming approach to tensegrity theory and realizability of graphs. In: Symposium on Discrete Algorithms, Miami, pp. 766–775 (2006)

    Google Scholar 

  32. Tseng, P.: Second-order cone programming relaxation of sensor network localization. SIAM J. Optim. 18(1), 156–185 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, Z., Zheng, S., Ye, Y., Boyd, S.: Further relaxations of the semidefinite programming approach to sensor network localization. SIAM J. Optim. 19, 655–673 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yang, Z., Liu, Y., Li, X.Y.: Beyond trilateration: on the localizability of wireless ad-hoc networks. In: IEEE INFOCOM, Rio de Janeiro, pp. 2392–2400 (2009)

    Google Scholar 

  35. Zhu, Z., So, A.M.C., Ye,Y.: Universal rigidity: towards accurate and efficient localization of wireless networks. In: IEEE INFOCOM, San Diego (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Taheri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shamsi, D., Taheri, N., Zhu, Z., Ye, Y. (2013). Conditions for Correct Sensor Network Localization Using SDP Relaxation. In: Bezdek, K., Deza, A., Ye, Y. (eds) Discrete Geometry and Optimization. Fields Institute Communications, vol 69. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00200-2_16

Download citation

Publish with us

Policies and ethics