Skip to main content

Part of the book series: Environmental Science and Engineering ((ENVENG))

  • 2366 Accesses

Abstract

Here we present a brief introduction to some theoretical ideas for granular matter. We start by reviewing the physical properties and constraints of granular materials. We then outline some approaches towards a thermodynamics for granular materials. We analyze the grain flow as a fluid mechanical phenomenon, with a brief introduction to the kinetic theory of inelastically colliding hard particles. We present a nonlinear theory of elasticity for granular solids. Finally, we briefly discuss the problem of formulating continuous field equations in discrete particulate systems and non–local constitutive relations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam M, Willits JT, Arnarson BÖ, Luding S (2002) Kinetic theory of a binary mixture of neraly elastic disks with size and mass disparity. Phys Fluids 14:4085–4087

    Article  Google Scholar 

  • Aranson IS, Tsimring LS (2006) Patterns and collective behavior in granular media: theoretical concepts. Rev Mod Phys 78:641–692

    Article  Google Scholar 

  • Arnarson BÖ, Willits JT (1998) Thermal diffusion in binary mixtures of smooth, nearly elastic spheres with and without gravity. Phys Fluids 10:1324–1328

    Article  Google Scholar 

  • Arnarson BÖ, Jenkins JT (2004) Binary mixtures of inelastic spheres: simplified constitutive theory. Phys Fluids 16:4543–4550

    Article  Google Scholar 

  • Aumaître S, Fauve S, McNamara S, Poggi P (2001) Power injected in dissipative systems and the fluctuation theorem. Eur Phys J B 19:449–460

    Article  Google Scholar 

  • Baldassarri A, Barrat A, D’Anna G, Loreto V, Mayor P, Puglisi A (2005) What is the temperature of a granular medium? J Phys: Condens Matter 17:S2405

    Google Scholar 

  • Barrat A, Trizac E (2002) Lack of energy equipartition in homogeneous heated binary granular mixtures. Granular Matter 4:57–63

    Article  Google Scholar 

  • Barrat A, Loreto V, Puglisi A (2004) Temperature probes in binary granular gases. Phys A 334:513–523

    Article  Google Scholar 

  • Baxter GW, Olafsen JS (2007) The temperature of a vibrated granular gas. Granular Matter 9:135–139

    Article  Google Scholar 

  • Bocquet L, Colin A, Ajdari A (2009) Kinetic theory of plastic flow in soft glassy materials. Phys Rev Lett 103:036001

    Article  Google Scholar 

  • Bonneau L, Andreotti B, Clément E (2007) Surface waves in granular media under gravity and their relation to booming avalanches. Phys Rev E 75:016602

    Article  Google Scholar 

  • Borderies N, Goldreich P, Tremaine S (1985) A granular flow model for dense planetary rings. ICARUS 63:406–420

    Article  Google Scholar 

  • Boussinesq J (1873) Essai théorique sur l’équilibre d’élasticité des massifs pulvérulents et sur la poussée des terres sans cohésion. Comptes Rendus des Séances de l’Académie des Sciences 77:1521–1525

    Google Scholar 

  • Brey JJ, Ruiz-Montero MJ, Moreno F (2000) Boundary conditions and normal state for a vibrated granular fluid. Phys Rev E 62:5339

    Article  Google Scholar 

  • Brilliantov NV, Pöschel T (2004) Kinetic theory of granular gases. Oxford University Press, Oxford

    Book  Google Scholar 

  • Callen H (1974) Thermodynamics as a science of symmetry. Found Phys 4:423–443

    Article  Google Scholar 

  • Chapman S, Cowling TG (1970) The mathematical theory of nonuniform gases. Cambridge University Press, Cambridge

    Google Scholar 

  • Corwin EI, Jaeger HM, Nagel SR (2005) Structural signature of jamming in granular media. Nature 435:1075–1078

    Article  Google Scholar 

  • Cugliandolo L, Kurchan J, Peliti L (1997) Energy flow, partial equilibration, and effective temperature in systems with slow dynamics. Phys Rev E 55:3898–3914

    Article  Google Scholar 

  • de Gennes PG (1998) Reflections on the mechanics of granular matter. Phys A 261:267–293

    Google Scholar 

  • de Gennes PG (1999) Granular matter: a tentative view. Rev Mod Phys 71:374–382

    Google Scholar 

  • Edwards SF, Oakeshott RBS (1989) Theory of powders. Phys A 157:1080–1090

    Article  Google Scholar 

  • Esposito LW (2010) Composition, structure, dynamics, and evolution of Saturn’s rings. Annu Rev Earth Planet Sci 38:383–410

    Article  Google Scholar 

  • Feitosa K, Menon N (2002) Breakdown of energy equipartition in a 2D binary vibrated granular gas. Phys Rev Lett 88:198301

    Article  Google Scholar 

  • García-Colín LS, Velasco RM, Uribe FJ (2008) Beyond the Navier-Stokes equations: Burnett hydrodynamics. Phys Rep 465:149–189

    Google Scholar 

  • Garzó V, Dufty JW, Hrenya CM (2007a) Enskog theory for polydisperse granular mixtures. I. Navier-Stokes order transport. Phys Rev E 76:031303

    Google Scholar 

  • Garzó V, Dufty JW, Hrenya CM (2007b) Enskog theory for polydisperse granular mixtures. II. Sonine polynomial approximation. Phys Rev E 76:031304

    Google Scholar 

  • Garzó V, Vega-Reyes F, Montanero JM (2009) Modified Sonine approximation for granular binary mixtures. J Fluid Mech 623:387–411

    Article  Google Scholar 

  • Geng J, Howell D, Longhi E, Behringer RP, Reydellet G, Vanel L, Clément E, Luding S (2001) Footprints in sand: the response of a granular material to local perturbations. Phys Rev Lett 87:035506

    Article  Google Scholar 

  • Geng J, Rydellet G, Clément E, Behringer RP (2003) Green function measurements of force transmission in 2D granular materials. Phys D 182:274–303

    Article  Google Scholar 

  • Glasser BJ, Goldhirsch I (2001) Scale dependence, correlations, and fluctuations of stresses in rapid granular flows. Phys Fluids 13:407–420

    Article  Google Scholar 

  • Goldenberg C, Goldhirsch I (2002a) Force chains, microelasticity, and macroelasticity. Phys Rev Lett 89:084302

    Article  Google Scholar 

  • Goldenberg C, Goldhirsch I (2002b) On the microscopic foundations of elasticity. Eur Phys J E 9:245–251

    Article  Google Scholar 

  • Goldenberg C, Goldhirsch I (2004) Small and large scale granular statics. Granular Matter 6:87–96

    Article  Google Scholar 

  • Goldenberg C, Goldhirsch I (2005) Friction enhances elasticity in granular solids. Nature 435:188–191

    Article  Google Scholar 

  • Goldenberg C, Atman APF, Claudin P, Combe G, Goldhirsch I (2006) Scale separation in granular packings: stress plateaus and fluctuations. Phys Rev Lett 96:168001

    Article  Google Scholar 

  • Goldenberg C, Tanguy A, Barrat J-L (2007) Particle displacements in the elastic deformation of amorphous materials: local fluctuations vs. non-affine field. Europhys Lett 80:16003

    Article  Google Scholar 

  • Goldenberg C, Goldhirsch I (2008) Effects of friction and disorder on the quasistatic response of granular solids to a localized force. Phys Rev E 77:041303

    Article  Google Scholar 

  • Goldhirsch I (2008) Introduction to granular temperature. Powder Technol 182:130–136

    Article  Google Scholar 

  • Guyon E, Roux S, Hansen A, Bideau D, Troadec J-P, Crapo H (1990) Non-local and non-linear problems in the mechanics of disordered systems: application to granular media and rigidity problems. Rep Prog Phys 53:373–419

    Article  Google Scholar 

  • Haff PK (1983) Grain flows as a fluid-mechanical phenomenon. J Fluid Mech 134:401–430

    Article  Google Scholar 

  • Herrmann HJ (1993) On the thermodynamics of granular media. Journal de Physique II (France) 3:427–433

    Article  Google Scholar 

  • Herrmann HJ (2002) Granular matter. Phys A 313:188–210

    Article  Google Scholar 

  • Hertz H (1882) Über die Berührung fester elastischer körpe. J. Reine Angewandte Mathematik 92:156–171

    Google Scholar 

  • Hong DC, Hayakawa H (1997) Thermodynamic theory of weakly excited granular systems. Phys Rev Lett 78:2764–2767

    Article  Google Scholar 

  • Jaeger HM, Nagel SR, Behringer RP (1996) Granular solids, liquids, and gases. Rev Mod Phys 68:1259–1273

    Article  Google Scholar 

  • Jenkins JT, Mancini F (1987) Balance laws and constitutive relations for plane flows of a dense, binary mixture of smooth, nearly elastic, circular disks. J Appl Mech 54:27–34

    Article  Google Scholar 

  • Jenkins JT, Mancini F (1989) Kinetic theory for binary mixtures of smooth, nearly elastic spheres. Phys Fluids A 1:2050–2057

    Article  Google Scholar 

  • Jia X (2004) Codalike multiple scattering of elastic waves in dense granular media. Phys Rev Lett 93:154303

    Article  Google Scholar 

  • Jiang Y, Liu M (2003) Granular elasticity without the coulomb condition. Phys Rev Lett 91:144301

    Article  Google Scholar 

  • Jiang Y, Liu M (2007a) From elasticity to hypoplasticity: dynamics of granular solids. Phys Rev Lett 99:105501

    Article  Google Scholar 

  • Jiang Y, Liu M (2007b) A brief review of “granular elasticity”, why and how far is sand elastic? Eur Phys J E 22:255–260

    Article  Google Scholar 

  • Jiang Y, Liu M (2007c) Hydrodynamic theory of granular solids: Permanent, transient, and granular elasticity. arXiv: 0706.1352v1

    Google Scholar 

  • Jiang Y, Liu M (2008) Incremental stress-strain relation from granular elasticity: comparison to experiments. Phys Rev E 77:021306

    Article  Google Scholar 

  • Jiang L, Liu M (2009) Granular solid hydrodynamics. Granular Matter 11:139–156

    Article  Google Scholar 

  • Kadanoff LP (1999) Built upon sand: theoretical ideas inspired by granular flows. Rev Mod Phys 71:435–444

    Article  Google Scholar 

  • Kamrin K, Koval G (2012) Nonlocal constitutive relation for steady granular flow. Phys Rev Lett 108:178301

    Article  Google Scholar 

  • Kudrolli A (2004) Size separation in vibrated granular matter. Rep Prog Phys 67:209–247

    Article  Google Scholar 

  • Landau LD, Lifshitz EM (1970) Theory of elasticity. Pergamon Press, New York

    Google Scholar 

  • Leonforte F, Tanguy A, Wittmer JP, Barrat J-L (2004) Continuum limit of amorphous elastic bodies II: linear response to a point force. Phys Rev E 70:014203

    Google Scholar 

  • Leonforte F, Boissière R, Tanguy A, Wittmer JP, Barrat J-L (2005) Continuum limit of amorphous elastic bodies III: three dimensional systems. Phys Rev E 72:224206

    Google Scholar 

  • Leonforte F, Tanguy A, Wittmer JP, Barrat J-L (2006) Inhomogeneous elastic response of silica glass. Phys Rev Lett 97:055501

    Article  Google Scholar 

  • López de Haro M, Cohen EGD, Kincaid JM (1983) The Enskog theory for multicomponent mixtures. I. Linear transport theory. J Chem Phys 78:2746–2759

    Google Scholar 

  • Mehta A, Barker GC (1994) The dynamics of sand. Rep Prog Phys 157:384–416

    Google Scholar 

  • Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 30:543–574

    Article  Google Scholar 

  • Murdoch AI, Bedeaux D (1994) Continuum equations of balance via weighted averages of microscopic quantities. Proc R Soc Lond Ser A 445:157–179

    Article  Google Scholar 

  • Nagel SR (1992) Instabilities in a sandpile. Rev Mod Phys 64:321–325

    Article  Google Scholar 

  • Olafsen JS, Urbach JS (1998) Clustering, order, and collapse in a driven granular monolayer. Phys Rev Lett 81:4369–4372

    Article  Google Scholar 

  • Olafsen JS, Urbach JS (2005) Two-dimensional melting far from equilibrium in a granular monolayer. Phys Rev Lett 95:098002

    Article  Google Scholar 

  • Ottino JM, Khakhar DV (2001) Fundamental research in heaping, mixing, and segregation of granular materials: challenges and perspectives. Powder Technol 121:117–122

    Article  Google Scholar 

  • Picard G, Ajdari A, Lequeux F, Bocquet B (2005) Slow flows of yield stress fluids: complex spatiotemporal behavior within a simple elastoplastic model. Phys Rev E 71:010501

    Article  Google Scholar 

  • Prevost A, Melby P, Egolf DA, Urbach JS (2004) Nonequilibrium two-phase coexistence in a confined granular layer. Phys Rev E 70:050301

    Article  Google Scholar 

  • Rajchenbach J (2000) Granular flows. Adv Phys 49:229–256

    Article  Google Scholar 

  • Reydellet G, Clément E (2001) Green function probe of a static granular piling. Phys Rev Lett 86:3308–3311

    Article  Google Scholar 

  • Reynolds O (1885) On the dilatancy of media composed of rigid particles in contact, with experimental illustrations. Phil Mag 20:469–481

    Article  Google Scholar 

  • Serero D, Rydellet G, Claudin P, Clément E, Levine D (2001) Stress response function of a granular layer: quantitative comparison between experiments and isotropic elasticity. Eur Phys J E 6:169–179

    Article  Google Scholar 

  • Serero D, Noskowicz SH, Goldhirsch I (2007) Exact results versus mean field solutions for binary granular gas mixtures. Granular Matter 10:37–46

    Article  Google Scholar 

  • Serero D, Goldhirsch I, Noskowicz SH, Tan M-L (2008a) Hydrodynamics of granular gases and granular mixtures. J Fluid Mech 554:237–258

    Google Scholar 

  • Serero D, Goldenberg C, Noskowicz SH, Goldhirsch I (2008b) The classical granular temperature and slightly beyond. Powder Technol 182:257–271

    Google Scholar 

  • Da Silva M, Rajchenbach J (2000) Stress transmission through a model system of cohesionless elastic grains. Nature 406:708–710

    Article  Google Scholar 

  • Tanguy A, Wittmer JP, Leonforte F, Barrat J-L (2002) Continuum limit of amorphous elastic bodies: a finite-size study of low-frequency harmonic vibrations. Phys Rev E 66:174205

    Google Scholar 

  • Tykhoniuk R, Tomas J, Luding S, Kappl M, Heim L, Butt H-J (2007) Ultrafine cohesive powders: from interparticle contacts to continuum behaviour. Chem Eng Sci 62:2843–2864

    Article  Google Scholar 

  • Willits JT, Arnarson BÖ (1999) Kinetic theory of a binary mixture of nearly elastic disks. Phys Fluids 11:3116–3122

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Trujillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Trujillo, L., Sigalotti, L.D.G. (2014). Theoretical Physics of Granular Fluids and Solids. In: Sigalotti, L., Klapp, J., Sira, E. (eds) Computational and Experimental Fluid Mechanics with Applications to Physics, Engineering and the Environment. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-00191-3_8

Download citation

Publish with us

Policies and ethics