Skip to main content

Luminescence Dating Protocols and Dating Range

  • Chapter
  • First Online:
Luminescence Dating in Archaeology, Anthropology, and Geoarchaeology

Abstract

Half a century after the publication of the first Thermoluminescence (TL) ages, the field of Luminescence Dating has reached a level of maturity. Both research and applications from all fields of archaeological science, from archaeological materials to anthropology and geoarchaeology, now routinely employ luminescence dating. The advent of optically stimulated luminescence (OSL) techniques and the potential for exploring a spectrum from mono-minerallic single grains to polymineral multi-aliquots enhanced the applicability, accuracy and the precision of luminescence dating. The present contribution reviews the physical basis, mechanisms and methodological aspects of luminescence dating; discusses advances in instrumentations and facilities, improvements in analytical procedures, and statistical treatment of data along with some examples of applications across continents. The case studies review the dating of heated and solar bleached archaeological material (artefacts, sediments, rocks, rock art and buildings) that cover all periods from Middle Palaeolithic to Medieval Eras and both Old and New World archaeology. They also include interdisciplinary applications that contribute to palaeo-landscape reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Athanassas C, Zacharias N (2010) Equivalent dose estimation in coarse quartz from Pleistocene coastal sediments of south Greece using single-aliquot TT-OSL. Quat Geochronology 5(1):65–75

    Google Scholar 

  • Ankjaergaard C, Jain M, Thomsen KJ, Murray AS (2010) Optimising the separation of quartz and feldspar optically stimulated luminescence using pulsed excitation. Radiat Meas 45:778–785

    Article  Google Scholar 

  • Banerjee D, Murray A.S, Bøtter-Jensen, L, Lang A (2001) Equivalent dose estimation using a single aliquot of polymineral fine grains. Radiation Measurements 33:73–94

    Google Scholar 

  • Berger GW, Clague JJ, Huntley DJ (1987) Thermoluminescence dating applied to glaciolacustrine sediments from central British Columbia. Canadian J Earth Sci 24:425–434

    Google Scholar 

  • Biswas RH, Williams MAJ, Raj R, Juyal N, Singhvi AK (2013) Methodological studies on luminescence dating of volcanic ashes. Quaternary Geochronology (in press) http://dx.doi.org/10.1016/j.quageo.2013.03.004

  • Bøtter-Jensen L (2000) Development of optically stimulated luminescence techniques using natural minerals and ceramics, and their application to retrospective dosimetry. Riso-R-1211 (EN) 74–85

    Google Scholar 

  • Buylaert JP, Murray AS, Thomsen KJ, Jain M (2009) Testing the potential of an elevated temperature IRSL signal from K-feldspar. Radiation Measurements 44:560–565

    Google Scholar 

  • Chauhan N, Singhvi AK (2011) Distribution of SAR paleodoses due to spatial heterogeneity of natural beta dose. Geochronometria 38:190–198

    Google Scholar 

  • Choi JH, Murray AS, Cheong CS, Hong DG, Chang HW (2003) The resolution of stratigraphic inconsistency in the luminescence ages of marine terrace sediments from Korea. Quat Sci Rev 22:1201–1206

    Article  Google Scholar 

  • Duller GAT (1991) Equivalent dose determination using single aliquots. Nucl Tracks Radiat Meas 18:371–378

    Article  Google Scholar 

  • Duller GAT (1994) Luminescence dating of sediments using single aliquots: new procedures. Quat Geochronol 13:149–156

    Google Scholar 

  • Erfurt G, Krbetschek MR (2003a) IRSAR: a single-aliquot regenerative-dose dating protocol applied to the infrared radio fluorescence (IR-RF) of coarse-grain K feldspar. Ancient TL 21:21–28

    Google Scholar 

  • Erfurt G, Krbetschek MR (2003b) Studies on the physics of the infrared radioluminescence of potassic feldspar and on the methodology of its application to sediment dating. Radiation Measurements 37:505–510

    Google Scholar 

  • Felix C, Singhvi AK (1997) Study of non-linear luminescence-dose growth curves for the estimation of paleodose in luminescence dating: results of Monte Carlo simulations. Radiat Meas 27:599

    Article  Google Scholar 

  • Feathers JK (2009) Problems of ceramic chronology in the Southeast: Does shell-tempered pottery appear earlier than we think? American Antiquity 74:113–142

    Google Scholar 

  • Galloway RB (1996) Equivalent dose determination using only one sample: alternative analysis of data obtained from infrared stimulation of feldspars. Radiation Measurements 26:103–106

    Google Scholar 

  • Greilich S, Wagner GA (2009) Light thrown on history: the dating of stone surfaces at the geoglyphs of Palpa using OSL. In: Reideland M, Wagner GA (eds) New technologies for archaeology, natural sciences in archaeology. Springer, Berlin, pp 271–283 Chapter 16

    Chapter  Google Scholar 

  • Greilich S, Glasmacher UA, Wagner GA (2002) Spatially resolved detection of luminescence: a unique tool for archaeochronometry. Naturwissenschaften 89:371–375

    Article  Google Scholar 

  • Greilich S, Glasmacher GA, Wagner GA (2005) Optical dating of granitic stone surfaces. Archaeometry 47(3):645–665

    Article  Google Scholar 

  • Haustein M, Krbetschek MR (2002) The red thermoluminescence of quartz and its application in dating archaeometallurgical slags. Radiation Protection Dosimetry 100:375–378

    Google Scholar 

  • Huntley DJ, Lamothe M (2001) Ubiquity of anomalous fading in K-feldspars and the measurements and correction for it in optical dating. Candian J Earth Sci 38:1093–1106

    Article  Google Scholar 

  • Huntley DJ, Godfrey-Smith DI, Thewalt MLW (1985) Optical dating of sediments. Nature 313:105–107

    Article  Google Scholar 

  • Jacobs Z, Roberts RG, Lachlan TJ, Karkanas P, Marean CW, Roberts DL (2011) Development of the SAR TT-OSL procedure for dating Middle Pleistocence dune and shallow marine deposits along the southern Cape coast of South Africa. Quat Geochronology 6:491–513

    Google Scholar 

  • Jain M, Boetter-Jensen L, Singhvi AK (2003) Dose evaluation using multiple aliquot quartz OSL: test of methods and a new protocol for improved accuracy and precision. Radiat Meas 37:67–80

    Article  Google Scholar 

  • Jain M, Murray AS, Bøtter-Jensen L (2004) Optically stimulated luminescence dating: How significant is incomplete light exposure in fluvial environments Quaternaire 15:143–157

    Google Scholar 

  • Jain M, Ankjærgaard C (2011) Towards a non-fading signal in feldspar: insight into charge transport and tunnelling from time-resolved optically stimulated luminescence. Radiation Measurements 46:292–309

    Google Scholar 

  • Kadereit A, Wagner GA, Corvinus G (2007) OSL/IRSL fine-grain dating: a preliminary chronology of quaternary slope wash and alluvial deposits from the Dun valleys of Dang and Deokhuri in western Nepal. In: Freund G, Reisch L (eds) Prehistoric cultures in Nepal from the early palaeolithic to the neolithic and the quaternary geology of the Dang-Deokhuri Dun Valleys, vol I. Harrassowitz Verlag, Wiesbaden, pp 372–379 Appendix II

    Google Scholar 

  • Kadereit A, Kreutzer S (2013) (in press) Risø calibration quartz—A challenge for β-source calibration. An applied study with relevance for luminescence dating. Measurement. doi: 10.1016/j.measurement.2013.03.005

  • Kadereit A, Greilich S, Woda S, Wagner GA (2009) Cold light from the sediments of a hot desert: how luminescence dating sheds light on the landscape development of the north-eastern Atacama. In: Reindel M, Wagner GA (eds) Natural science in archaeology. New technologies for archaeology: multidisciplinary investigations in Palpa and Nasca, Peru, Chapter 15. Springer, pp 245–270

    Google Scholar 

  • Krbetschek MR, Degering D, Alexowsky W (2008) Infrarot-Radiofluoreszenz-Alter (IR-RF) unter-saalezeitlicher SedimenteMittel- und Ostdeutschlands. Z dt Ges Geowiss 159(1):133–140

    Google Scholar 

  • Kitis G, Liritzis I, Vafeiadou A (2002) Deconvolution of optical stimulated luminescence decay curves. J Radioanalytical Nuclear Chemistry 254:143–149

    Google Scholar 

  • Lang A (1996) Die Infrarot-Stimulierte-Lumineszenz als Datierungsmethode für holozäne Lössderivate. – Heidelberger Geographische Arbeiten, Heidelberg, 103:137

    Google Scholar 

  • Lang A, Hatté C, Rousseau D-D, Antoine P, Fontugne M, Zöller L, Hambach U (2003) High-resolution chronologies for loess: comparing AMS 14C and optical dating results. Quat Sci Rev 22(10–13):953–959

    Article  Google Scholar 

  • Li B, Li S-H (2011) Luminescence dating of K-feldspar from sediments: a protocol without anomalous fading correction. Quat Geochronol 6:468–479

    Article  Google Scholar 

  • Li S-H, Li B (2006a) Dose measurement using fast component of LM-OSL signals from quartz. Radiat Meas 41:534–541

    Google Scholar 

  • Li B, Li S-H (2006b) Comparison of De estimates using the fast component and medium component of the quartz OSL. Radiat Meas 41:125–136

    Google Scholar 

  • Li B, Li S-H, Wintle AG, Zhao H (2007) Isochron measurements of naturally irradiated K-feldspar grains. Radiat Meas 42:1315–1327

    Article  Google Scholar 

  • Li B, Li S-H, Wintle AG, Zhao H (2008a) Isochron dating of sediments using luminescence of K-feldspar grains. J Geophys Res 113:F02026. doi:10.1029/2007JF000900

    Article  Google Scholar 

  • Li B, Li SH, Wintle AG (2008b) Overcoming environmental dose rate changes in luminescence dating of water lain deposits. Geochronometria 30:33–40

    Article  Google Scholar 

  • Liritzis I (1994) A new dating method by thermoluminescence of carved megalithic stone building. C R l’Academie Sci, Paris, Serie II 319:603–610

    Google Scholar 

  • Liritzis I, Guilbert P, Foti F, Schvoerer M (1997) The temple of Apollo (Delphi) strengthens new thermoluminescence dating method. Geoarchaeol Int 12(5):479–496

    Article  Google Scholar 

  • Liritzis I, Galloway RB, Katsonopoulou D, Soters D (2001) In search of ancient Helike, Gulf of Corinth, Greece. J Coastal Res 17:(1):118–123

    Google Scholar 

  • Liritzis I, Galloway RB, Hong D, Kyparissi-Apostolika N (2002) OSL dating of three prehistoric ceramics from Theopetra cave, Greece: a case study. Mediterr Archaeol Archaeometry 2:35–43

    Google Scholar 

  • Liritzis I, Zacharias N, Polymeris GS, Kitis G, Ernstson K, Sudhaus D, Neumair A, Mayer W, Rappenglück MA, Rappenglück B (2010a) The Chiemgau meteorite impact and tsunami event (southeast Germany): first OSL dating. Mediterr Archaeol Archaeometry 10(4):17–33

    Google Scholar 

  • Liritzis I, Polymeris G, Zacharias N (2010b) Surface luminescence dating of ‘Dragon Houses’ and Armena Gate at Styra (Euboea, Greece). Mediterr Archaeol Archaeometry 10(3):65–81 Special Issue, (D. Keller, guest editor)

    Google Scholar 

  • Mayya YS, Mortekai P, Murari MK, Singhvi AK (2006) Towards quantifying beta microdosimetric effects in single-grain quartz dose distribution. Radiation Measurements 41:1032–1039

    Google Scholar 

  • Mejdahl V, Botter-Jensen L (1994) Luminescence dating of archaeological materials using a new techniques based on single aliquot measurements. Quat Sci Rev 13:551–554

    Google Scholar 

  • Mejdahl V, Botter-Jensen L (1997) Experience with the SARA OSL method. Radiation Measurements 27:291–294

    Google Scholar 

  • Murari MK, Achyuthan H, Singhvi AK (2007) Luminescence studies on the sediments laid down by the December 2004 tsunami event: Prospects for the dating of palaeo tsunamis and for the estimation of sediment fluxes. Current Sci 92:367–371

    Google Scholar 

  • Murray AS, Wintle AG (2000) Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32(1):57–73

    Google Scholar 

  • Olley J, Caitcheon G, Murray A (1998) The distribution of apparent dose as determined by optically stimulated luminescence in small aliquots of fluvial quartz: Implications for dating young sediments. Quat Sci Rev 17:1033–1040

    Google Scholar 

  • Olley JM, Caitcheon GG, Roberts RG (1999) The origin of dose distributions in fluvial sediments, and the prospect of dating single grains from fluvial deposits using optically stimulated luminescence. Radiation Measurements 30: 207–217

    Google Scholar 

  • Porat N, Duller GAT, Roberts HM, Wintle AG (2009) A simplified SAR protocol for TT-OSL. Radiat Meas 44(5–6):538–542

    Article  Google Scholar 

  • Prescott JR, Huntley DJ, Hutton JT (1993) Estimation of equivalent dose in thermoluminescence dating – the Australian slide method: Ancient TL v. 11(1):1-5

    Google Scholar 

  • Richter D, Krbetschek M (2006) A new thermoluminescence dating technique for heated flint. Archaeometry 48:695–715

    Article  Google Scholar 

  • Schilles T, Habermann J (2000) Radioluminescence dating: the IR emission of feldspar. Radiat Meas 32:679–683

    Article  Google Scholar 

  • Singarayer J, Bailey RM (2004) Component-resolved bleaching spectra of quartz optically stimulated luminescence: preliminary results and implications for dating. Radiat Meas 38:111–118

    Article  Google Scholar 

  • Singhvi AK, Williams MAJ, Rajaguru SN, Misra VN, Chawla S, Stokes S, Chauhan, N, Francis T, Ganjoo RK, Humphreys GS (2010) A ~200 ka record of climatic change and dune activity in the Thar Desert, India Quat Sci Rev, 29(23-24):3095–3105

    Google Scholar 

  • Singhvi Ashok K, Stokes SC, Chauhan N (2011) Changes in natural OSL sensitivity during single aliquot regeneration procedure and their implications for equivalent dose determination. Geochronometria 38:231–241

    Google Scholar 

  • Strahl J, Krbetschek MR, Luckert J, Machalett B, Meng S, Oches EA, Rappsilber I, Wansa S, Zöller L (2010) Geologie, Paläontologie und Geochronologie des Eem-Beckens Neumark-Nord 2 und Vergleich mit dem Becken Neumark-Nord 1 (Geiseltal, Sachsen-Anhalt). Eiszeitalter Gegenwart (Quat Sci J) 59(1–2):120–167

    Google Scholar 

  • Trautmann T, Krbetschek MR, Dietrich A, Stolz W (1999a) Radioluminescence dating: a new tool for quaternary geology and archaeology. Naturwissenschaften 86:441–444

    Article  Google Scholar 

  • Trautmann T, Krbetschek MR, Dietrich A, Stolz W (1999b) Feldspar radioluminescence: a new dating tool and its physical background. J Luminescence 85:45–58

    Article  Google Scholar 

  • Trautmann T, Krbetschek MR, Stolz W (2000) A systematical study of radioluminescence properties of single feldspar grains. Radiat Meas 32:685–690

    Article  Google Scholar 

  • Vafiadou A, Murray AS, Liritzis I (2007) Optically stimulated luminescence (OSL) dating investigations of rock and underlying soil from three case studies. J Archaeol Sci 34:1659–1669

    Article  Google Scholar 

  • Vandenberghe DAG, Jain M, Murray AS (2009) Equivalent dose determination using a quartz isothermal TL signal. Radiation Measurements 44:439–444

    Google Scholar 

  • Wang XL, Lu YC, Wintle AG (2006a) Recuperated OSL dating of fine-grained quartz in Chinese loess. Quat Geochronol 1:89–100

    Article  Google Scholar 

  • Wang W-D, Xia J-D, Zhou Z-X (2006b) Thermoluminescence dating of the ancient Chinese porcelain using a regression method of saturation exponential in pre-dose technique. Sci China Ser E: Technol Sci 49:194–209

    Article  Google Scholar 

  • Wang XL, Wintle AG, Lu YC (2007) Testing a single-aliquot protocol for recuperated OSL dating. – Radiation Measurements 42:380–391

    Google Scholar 

  • Wagner GA, Krbetschek M, Degering D, Bahain J-J, Shao Q, Falgueres C, Voinchet P, Rightmire GP (2010) Radiometric dating of the type site for Homo heidelbergensis at Mauer, Germany. Proceedings of the National Academy of Sciences 107:19726–19730

    Google Scholar 

  • Wintle AG, Huntley DJ (1980) Thermoluminescence dating of ocean sediments. Canadian J Earth Sci 17:348–360

    Google Scholar 

  • Wintle AG, Murray AS (2006) A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements 41:369–391

    Google Scholar 

  • Yukihara EG, Mckeever SWS (2011) Optically stimulated luminescence: fundamentals and applications. Wiley, Sussex, p 362

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Liritzis .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Liritzis, I. et al. (2013). Luminescence Dating Protocols and Dating Range. In: Luminescence Dating in Archaeology, Anthropology, and Geoarchaeology. SpringerBriefs in Earth System Sciences. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00170-8_2

Download citation

Publish with us

Policies and ethics